Y. Itow, Y. Obayashi, Y. Totsuka (ICRR)
Y. Hayato, H. Ishino, T. Kobayashi,
K. Nakamura, M. Sakuda (KEK)
T. Hara (Kobe)
T. Nakaya, K. Nishikawa (Kyoto)
T. Hasegawa, K. Ishihara, A. Suzuki (Tohoku)
A. Konaka (TRIUMF)

http://neutrino.kek.jp/jhfnu
Overview of JHF - SK

- $\nu_\mu \to \nu_x$ disappearance:
 - Precise measurement of oscillation parameters:
 $$\delta(\Delta m_{23}^2) \sim 2 \times 10^{-4} \text{eV}^2,$$
 $$\delta(\sin^2 2\theta_{\mu x}) \sim 1\%$$

- $\nu_\mu \to \nu_e$ appearance:
 - Explore down to
 $$\sin^2 2\theta_{\mu e} \sim 5 \times 10^{-3}$$

- Oscillation Max @ $E = 0.5\sim 1.2\text{GeV}$
 - $P = \sin^2 2\theta \cdot \sin^2 (1.27\Delta m_{23}^2 L/E)$
 - $\Delta m_{23}^2 = 2 \sim 5 \times 10^{-3} \text{eV}^2$, $L = 295\text{km}$
JHF (Japan Hadrons Facility)

JAERI @ Tokai-mura
Construction: 2001 ~ 2006

![Map of JHF facility with Neutrino Beam Line and Front Detector(s) leading to Super-Kamiokande](image)

<table>
<thead>
<tr>
<th></th>
<th>JHF</th>
<th>MINOS</th>
<th>K2K</th>
</tr>
</thead>
<tbody>
<tr>
<td>E(GeV)</td>
<td>50</td>
<td>120</td>
<td>12</td>
</tr>
<tr>
<td>Int. (10^{12} ppp)</td>
<td>330</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>Rate (Hz)</td>
<td>0.29</td>
<td>0.53</td>
<td>0.45</td>
</tr>
<tr>
<td>Power (MW)</td>
<td>0.77</td>
<td>0.41</td>
<td>0.0052</td>
</tr>
</tbody>
</table>

10^{21} p.o.t./1 year (130 day)

Yoshihisa OBAYASHI, Honolulu - Oct. 6, 2000
Far Detector

Super-Kamiokande @ Kamioka
- Operation Start: 1996
- 295 km from JAERI
- 50.0kt Pure Water in the tank
- 22.5kt Fiducial Volume as a neutrino target
- Energy measurement by total amount of Cherenkov light
- e-μ separation is performed by ring pattern likelihood
Neutrino Beam at JHF

- **Three Possible options:**
 - **Wide Band Beam (WBB)**
 - 2 horns, almost same as K2K
 - **Narrow Band Beam (NBB)**
 - Horn(s) + Bending
 - **Off Axis Beam**
 - Another option of NBB

- **Present Strategy:**
 - **First 1(~2) year:**
 - High Statistics Run with WBB
 - Pin down Δm^2
 - **Next 5 years:**
 - Precise Analysis with (one of) NBB
 - Measurement of θ_{23}, θ_{13}
Wide Band Beam

- ☀ High Intensity
- ☀ Wide sensitivity in Δm^2
- ☀ Established technique
- ☹ Backgrounds from HE tail
- ☹ Spectra diff. btw near&far
 - Systematic error
- ☹ Needs Heavy shielding
 - decay pipe must be short
- $\sim 4200 \nu_\mu$ int./22.5kt/yr
 - (ν_e: 0.8%)
Narrow Band Beam

- Less systematic error
- Less BG from HE tail
- Easy to tune E_{ν}
- Less shielding
- Low intensity

- $\sim 830 \, \nu_\mu \, \text{int./22.5kt/yr}$

 (Ve: 0.3%@peak)
Off Axis Beam: Another option of NBB

WBB with intentionally misaligned from detector axis

Decay Kinematics

Quasi Monochromatic Beam
Off Axis Beam

- ☑ More intense than NBB
- ☹ More HE tail than NBB
- ☹ Hard to tune E_{ν}
- ☹ Needs heavy shielding
- ☹ Not established technique
 - Beam monitor
 - Near/Far ratio, ...

~ 2200 ν_μ int./22.5kt/yr
 - (ν_e: 0.2%@peak)
Physics Sensitivity
ν_μ Disappearance

Ratio after BG subtraction:

- Fit with
 $$1 - \sin^2 2\theta \cdot \sin^2 (1.27 \Delta m^2 L/E)$$
\textbf{V}_\mu \textbf{ Disappearance}

\begin{itemize}
 \item Possible systematic errors:
 \begin{itemize}
 \item inelastic cross section: 20\%
 \item Spectrum @FD: 4\% E
 \item Spectrum diff.(Near/ Far): 10\%
 \item Energy measurement: 3\%
 \end{itemize}
\end{itemize}

\[\delta (\sin^2 2\theta) \sim 0.01 \text{ in 5 years} \]
Three flavor oscillation framework:

- $\Delta m_{12} << \Delta m_{23} \sim \Delta m_{13} \square \Delta m^2$
 - $\Delta m_{23} = \Delta m^2_{atm} > 10^{-3}\text{eV}^2$
 - $\Delta m_{12} = \Delta m^2_{sol} < 10^{-4}\text{eV}^2$

Oscillation Probability P:

- $m_3^2 \uparrow \Delta m^2_{atm}$
- $m_2^2 \downarrow \Delta m^2_{sol}$

$$
P(\nu_\mu \leftrightarrow \nu_e) = \sin^2 2\theta_{13} \cdot \sin^2 \theta_{23} \cdot \sin^2 \left(\frac{1.27 \cdot \Delta m^2 \cdot L}{E}\right)
$$

$$
P(\nu_\mu \leftrightarrow \nu_\tau) = \cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} \cdot \sin^2 \left(\frac{1.27 \cdot \Delta m^2 \cdot L}{E}\right)
$$

$$
P(\nu_e \leftrightarrow \nu_\tau) = \sin^2 2\theta_{13} \cdot \cos^2 \theta_{23} \cdot \sin^2 \left(\frac{1.27 \cdot \Delta m^2 \cdot L}{E}\right)
$$

Present limit: $\sin^2 2\theta_{\mu e} > 5\times10^{-2}$

- $\sin^2 2\theta_{\mu e} = \sin^2 2\theta_{13} \cdot \sin^2 \theta_{23}$
 - $\sin^2 2\theta_{13} < 0.1$ (CHOOZ)
 - $\sin^2 \theta_{23} \sim 0.5$ (Atmospheric ν)

Goal: $\sin^2 2\theta_{\mu e} \sim 5\times10^{-3}$
Signal & Backgrounds

Signal: ν_e C.C. interaction
- Single fuzzy ring
- Cherenkov angle ~ 42deg.

ν_e --- $e^{+/-}$ shower

BG 1: ν_μ C.C. interaction
- Sharp ring edge
- Cherenkov angle < 42deg.

ν_μ --- μ

\Rightarrow easy to reject
BG 2: N.C. π^0 production

$\nu \nu \pi^0 2\gamma$

2 showers

- 2 fuzzy rings hard to separate
- Not reproduce E_{ν}

⇒ need effort to reject
Ve Selection by SK Official Cuts

<table>
<thead>
<tr>
<th></th>
<th>ν_μ (w/ π^0)</th>
<th>ν_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fid. Vol.</td>
<td>3651</td>
<td>795</td>
</tr>
<tr>
<td>1Re-like</td>
<td>92</td>
<td>68</td>
</tr>
<tr>
<td>reduct rate</td>
<td>2.5%</td>
<td>8.6%</td>
</tr>
</tbody>
</table>

$\sin^2 2\theta_{\mu e} = 0.05, \Delta m^2 = 3 \times 10^{-3} \text{eV}^2$

- **S/N ~ 1/3 (@$\sin^2 2\theta_{\mu e} = 0.05$)**
- **Main Background come from π^0**

![Graph showing expected signal and background](image)
\(\pi^0 \) rejection

- **Force to find 2\(^{nd} \) \(\gamma \) ring
- **Cut with follow quantities:**
 - Shower direction w.r.t. \(\nu \) (\(\cos \theta_{\nu e} \))
 - Energy fraction of second \(\gamma \)
 \[R(\gamma_2) = \frac{E(\gamma_2)}{E(\gamma_1) + E(\gamma_2)} \]
 - Pattern likelihood difference
 - Invariant mass of 2 \(\gamma \)
Yoshihisa OBA YASHI, Honolulu- Oct. 6, 2000

π⁰ cut efficiency

WBB 1year

<table>
<thead>
<tr>
<th></th>
<th>WIDE</th>
<th></th>
<th>Ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fid. Vol.</td>
<td>3651</td>
<td>53.3</td>
<td></td>
</tr>
<tr>
<td>1Re-like</td>
<td>92(2.5%)</td>
<td>29.5(55.3%)</td>
<td></td>
</tr>
<tr>
<td>π⁰ cut</td>
<td>4.0(0.1%)</td>
<td>9.8(18.4%)</td>
<td></td>
</tr>
</tbody>
</table>

NBB 1year

<table>
<thead>
<tr>
<th></th>
<th>LE2π</th>
<th></th>
<th>Ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fid. Vol.</td>
<td>740</td>
<td>23.0</td>
<td></td>
</tr>
<tr>
<td>1Re-like</td>
<td>13.2(1.8%)</td>
<td>16.2(70.4%)</td>
<td></td>
</tr>
<tr>
<td>π⁰ cut</td>
<td>1.8(0.2%)</td>
<td>11.6(50.4%)</td>
<td></td>
</tr>
</tbody>
</table>

Off Axis 1year

<table>
<thead>
<tr>
<th></th>
<th>2deg.</th>
<th></th>
<th>Ve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fid. Vol.</td>
<td>1801</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>1Re-like</td>
<td>37.4(2.1%)</td>
<td>32.1(70.5%)</td>
<td></td>
</tr>
<tr>
<td>π⁰ cut</td>
<td>3.8(0.2%)</td>
<td>24.3(53.4%)</td>
<td></td>
</tr>
</tbody>
</table>

sin²2θₑµ=0.05, Δm²=3x10⁻³eV²
V_{\mu} \to V_{e} Oscillation Sensitivity

\[\sin^2 2\theta_{\mu e} \approx 5(3) \times 10^{-3} \] \text{ at 90\% C.L.} by 5-year run of NBB (off axis beam)

10\% systematic in BG rate is considered

Yoshihisa OBAYASHI, Honolulu- Oct. 6, 2000
10% systematic in BG rate is considered
Comparison to MINOS

JHF neutrino is more sensitive especially in Atmospheric Δm^2 region
\[\nu_\mu \oplus \nu_\tau? \nu_{\text{sterile}?} \]

- **NC \(\pi^0 \) production:**
 \[\nu + N \leftrightarrow \nu + N + \pi^0 \]

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\nu_\mu)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>(\nu_\tau)</td>
<td>Few</td>
<td>Yes</td>
</tr>
<tr>
<td>(\nu_{\text{sterile}})</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

- **In the case of \(\nu_\mu \oplus \nu_{\text{sterile}} \) oscillation,**
 - Number of \(\pi^0 \) also decrease

- \(\nu_\tau \oplus \nu_{\text{sterile}} \) discrimination

Yoshihisa OBAYASHI, Honolulu- Oct. 6, 2000
Summary

- **JHF neutrino experiment**
 - Expected to start in **2006**

- **Far Detector**: Super-K

- **By 5 years of run:**
 - ν_μ disappearance search
 - $\delta(\Delta m^2) \sim 2 \times 10^{-4} \text{eV}^2$
 - $\delta(\sin^2 2\theta) \sim 1\%$

 - ν_e appearance search
 - $\sin^2 2\theta_{\mu e} \sim 5 \times 10^{-3}$ @90\%CL

- $\nu_\mu \to \nu_\tau$ or $\nu_\mu \to \nu_{\text{sterile}}$
 - Can be tested
Test of CP Violation

If $\sin^2 2\theta_{13} \sim 0.01$:

1MW (2deg. off axis) vs. SK:
- $2\nu_\mu \rightarrow \nu_e / \text{year}$
 - Too few to see CP

4MW vs. Mton:
- $300\overline{\nu}_\mu \rightarrow \overline{\nu}_e / \text{year}$
- $100\nu_\mu \rightarrow \nu_e / \text{year}$

1year $\nu + 3\text{year}\overline{\nu}$
- 600 total events with asym: $150\times \sin\delta$
 - $\delta = 30\text{deg.}(3\sigma), 12\text{deg.}(90\% \text{ CL})$