New large aperture, hybrid photo-detector and photomultiplier tubes for gigantic water Cherenkov ring imaging detectors

Seiko Hirota (Kyoto Univ.)
Y.Nishimura, Y.Suda, S.Nakayama, M.Shiozawa, M.Nakahata, Y.Hayato, H.Tanaka, M.Miura,
I.Kametani, Y.Haga,
A.Ichikawa, T.Nakaya, K. Huang, A.Minamino, K.Tateishi, H.Aihara, M.Yokoyama,
T.Ohmura, Y.Kawai, M.Suzuki
For Hyper-Kamiokande working group
2013. 12.3 @RICH

ICRR, Univ. of Tokyo., Kyoto Univ. ,Hamamatsu K.K.
Contents

• Goal of development of new photo-sensors
• Introduction of new photo-sensors for a gigantic water Cherenkov detector
• Overview of development
• Development status
 – Performance evaluation
 – The Proof-test in a water tank
• Future plan
• Summary
The goal of detector development

New photo-sensor

for gigantic water Cherenkov detector, mainly Hyper-Kamiokande.

| ID (50cm) | 99000 |
| OD (20cm) | 25000 |

We need...
- Low cost!
- High performance!

Physics Topics

- Neutrino physics/astrophysics
 - Long Baseline experiment
 - Atmospheric neutrino
 - Solar neutrino
 - Super Nova neutrino
- Proton decay

Requirement

- Wide energy range (GeV ~ MeV)
- Self trigger
- Short dead time
- Long Term Operation

- Wide range of p.e.
- 1 p.e. sensitivity
- ~ns time resolution
- Low dark rate
- Stability of performance
- Durability over 10 years
Principle of HK photo-sensors

Photo-sensors are provided by Hamamatsu K.K.

PMT

- 2kV dynode (Venetian Blind)
- New, but similar to old one

New!

HPD

- 8kV
- Avalanche Diode (AD) @Bias 300V (×400)
- New!

Higher Voltage ~8kV!

→ Some problem?

Low Risk!

Established technology

Experience of 10 years operation

Is there value to work for new sensors? → See benefit.

High Risk!
Performance of HK photo-sensors

All photo sensor has High QE (HQE) option! (22% → 30%)

<table>
<thead>
<tr>
<th>PMT R3600</th>
<th>PMT R12860</th>
<th>HPD R12850 (w/o amp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>10^7</td>
<td>10^7</td>
</tr>
<tr>
<td>T.T.S.</td>
<td>~5.5ns (FWHM)</td>
<td>~2.7ns (FWHM)</td>
</tr>
<tr>
<td>C.E.</td>
<td>80%</td>
<td>93%</td>
</tr>
<tr>
<td>P/V @1p.e.</td>
<td>1.4</td>
<td>>2.5</td>
</tr>
</tbody>
</table>

New technology must be verified. → **The Proof-test**

Expected better performance must be confirmed → **Performance evaluation**
• As a first step, we start with 20cmφ HPD and HQE R3600 (HQE cathode + old PMT).
 • We have started the first proof-test in this autumn.
• As a next step, HQE 50cmφ HPD and new type PMT are going to be prepared.
• We will select photo detector for HK by 2016
Contents of development

Both performance evaluation and the proof-test to use in a water tank are needed.

Performance evaluation

- All new photo sensor
 - 1 p.e. sensitivity
 - Timing resolution
 - Dark rate
 - Gain

- HPD only
 - Noise of avalanche diode
 - Rate tolerance of pre-amp

The Proof-test @ Kamioka mine, Japan

- Trial use of new photo-sensors in 200-ton water tank
- Check feasibility and few years stable operation.
- Establish detailed procedure to use new photo-sensors in a Cherenkov water tank.

Detailed performance (Gain)
- Temperature dependence
- Magnetic dependence
- Uniformity

R&D of ancillary equipment for HPD

- HV module, Pre-amp....
The prototype of 20cmφ HPD

Prototype of 20cmφ HPD

AD (5mmφ)

30cm

Preamp

~300V

Filter

AD

AD

8kV

HV Module

Water-proof Housing

LV Power Supply

① 10V

HV module power source

② 1~4V

Control of HV output

Gain: \(\sim 5 \times 10^7 \) @350V AD Bias

P/V : \(\sim 4 \)

Dark Rate

\(\sim 3 \text{kHz} \) @ 0.5 p.e.

1p.e. TTS \(\sigma = 0.86\text{ns} \)
The first study for HQE option

- HQE R3600 is prepared for the first proof test.
- About 30% QE is achieved.
- Dark Rate is most concerning issues related to HQE option.

Gain: $\sim 1\times 10^7$

P/V : ~ 1.4

*Consistent with NQE R3600

Dark Rate

$\sim 20\text{kHz} @ 0.25 \text{ p.e.}$

*0.25p.e. is standard threshold level for NQE R3600 in SK
Preparation for installation

- We checked basic performance and safety operation in water.
- We checked durability by 1 month operation without failure

Mass production of prototype
- Ten 20cmφ HPD
- Seven 50cmφ HQE R3600

Pre-selection
- Pre-calibration
- 1p.e. resolution and dark rate check → Comparable or better performance than NQE R3600
- Flasher check

Eight of 20cmφ HPD and five of 50cm HQE R3600 were installed.
Gain adjustment (Pre-calibration)

HPD
- Target gain is determined to get the best 1p.e. resolution
- Gain is tuned by tuning avalanche gain with fixed 8kV HV.

HQE
- Target gain is same level as NQE gain at 1p.e.
The proof test

• Construction was carried out from middle of Jul. to end of August.

• The first proof test start from Sep. 2013

• Eight of 20cmφ HPD and five of HQE R3600 are installed with 227 of NQE R3600.
The history of the first proof test until now

<table>
<thead>
<tr>
<th>Work history</th>
<th>Current PD status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aug.</td>
<td>PD</td>
</tr>
<tr>
<td>• Pre-calibration</td>
<td>Status</td>
</tr>
<tr>
<td>• Photo-sensor</td>
<td>• HPV module failure</td>
</tr>
<tr>
<td>Installation</td>
<td>• High dark rate</td>
</tr>
<tr>
<td>• DAQ, slow monitor</td>
<td>• Low frequency noise</td>
</tr>
<tr>
<td>Preparation</td>
<td>◎</td>
</tr>
<tr>
<td>Sep.</td>
<td># of all HPDs</td>
</tr>
<tr>
<td>• 1p.e. measurement</td>
<td>8</td>
</tr>
<tr>
<td>• Dark Rate</td>
<td></td>
</tr>
<tr>
<td>• Calibration</td>
<td>PD</td>
</tr>
<tr>
<td>• 9MeV γ</td>
<td>Status</td>
</tr>
<tr>
<td>• Multi p.e.</td>
<td>• High dark rate</td>
</tr>
<tr>
<td>(Xe lump)</td>
<td>◎</td>
</tr>
<tr>
<td>Oct.</td>
<td># of all HQE R3600 PMT</td>
</tr>
<tr>
<td>Nov.</td>
<td>5</td>
</tr>
</tbody>
</table>
1 p.e. measurement

1p.e. can be seen in the tank with both HPD and HQE PMT.

- **HPD**:
 - Pedestal (w/ >1.5mV cut)
 - 1 p.e. Resolution ~30% (σ)
 - 1 p.e. region

- **HQE/NQE**:
 - 1 p.e. Resolution ~50% (σ)

Timing resolution @1p.e.

- **20cmφ HPD**
- **50cmφ HQE**
- **50cmφ NQE**

- **HPD**: 1.2ns (σ)
 - HPD shows better resolution than other photo-sensors
HPD Multi p.e. measurement

Multi p.e. can be recognized by HPD due to its good p.e. separation.

Measurement Setup

External trigger

W/o light source

1 p.e. 2 p.e. 3 p.e. 4 p.e.

Linearity

Resolution

Number of Photoelectrons

\[\chi^2 / \text{ndf} \]

\[\Delta \text{Prob} \]

\[p0 \]

\[p1 \]

\[0.07892 \pm 0.01833 \]

\[3.722 \pm 0.01093 \]

\[0.008992 \pm 0.001479 \]

\[0.00376 \pm 0.009764 \]

\[13.03 / 2 \]

\[0.0635 \pm 0.00088982 \]

\[-0.09754 \pm 0.007676 \]
Dark Rate

- At each threshold level dark rate of six HPDs are lower than average dark rate of NQE PMT.
- HQE PMT dark rate is still high.
 1. HQE need longer time to stabilize? → Confirm few month later.
 2. The first HQE large aperture PMT → Improve by sophistication of production process?

Dark Rate Distribution @ End of Nov.

<table>
<thead>
<tr>
<th>Aperture</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 cmφ HPD</td>
<td>-4 mV</td>
</tr>
<tr>
<td>50 cmφ HQE</td>
<td>-1 mV</td>
</tr>
<tr>
<td>50 cmφ NQE</td>
<td>-1 mV</td>
</tr>
</tbody>
</table>

* Gain: ~1.5×10^7
HQE gain is tuned to get same charge as NQE with multi p.e. light,
Next step

20cmφ HPD, HQE R3600 Proof-test
• Basic performance in the tank will be confirmed by end of this year.
 • 1p.e. resolution, timing resolution, QE
• Rate and light yield of flasher will be check by end of this year.
 → Feedback to 50cmφ HPD development.
 → HV module & pre-amplifier improvement
• The long term stability of gain and dark rate will be measured.

50cmφ HQE HPD (R12850) new type 50cmφ HQE PMT(R12860)
• Hamamatsu K.K. are going to prepare and we are starting measurement.

For All new photo-sensors
• Detail measurement
Summary

• We have been developing new high QE photo-sensors for Hyper-Kamiokande project.
• We have started the first proof-test of 20cm φ HPDs and high QE R3600 in 200-ton water tank.
 – HPDs show better performance such as timing resolution and 1p.e. resolution.
 – A HPD failure happens because of HV module problem.
 – All HQE PMTs are working and show similar performance to NQE PMTs except for dark rate. It may need more time to stabilize.
 – We keep monitoring to confirm stable operation including stability check of gain and dark rate.
• As next step, HQE 50cm φ HPDs and B&L type PMTs will be measured from this or next month for the proof test.
• Detailed performance evaluation and study of AD, HV module and pre-amplifier are starting.
• HK photo-sensor will be selected by 2016
QE measurement
Safety check

• 簡単に結果を書くべき？
• 書くなら，proofテストの前か？
Issues

• Flasher study
 – HPD needs higher voltage than PMTs,

• Pre-amplifier improvement, HV module R&D is ongoing.

• AD noise study
The current status of first proof test

Current work

<table>
<thead>
<tr>
<th>Month</th>
<th>Tasks</th>
</tr>
</thead>
</table>
| Aug. | • Pre-calibration
| Sep. | • Photo-sensor Installation
| Oct. | • DAQ, slow monitor preparation
| Nov. | • 1p.e. measurement
| | • Dark Rate
| | • Calibration
| | • 9MeV γ
| | • Multi p.e. (Xe lump)

<table>
<thead>
<tr>
<th>PD Serial#</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>EHD0073</td>
<td>× HV module failure</td>
</tr>
<tr>
<td>EHD0074</td>
<td>○ High dark rate</td>
</tr>
<tr>
<td>EHD0078</td>
<td>○ External noise</td>
</tr>
<tr>
<td>EHD0080</td>
<td>◎</td>
</tr>
<tr>
<td>EHD0083</td>
<td>◎</td>
</tr>
<tr>
<td>EHD0091</td>
<td>○ Low frequency noise</td>
</tr>
<tr>
<td>EHD0092</td>
<td>○ High dark rate</td>
</tr>
<tr>
<td>EHD0095</td>
<td>◎</td>
</tr>
<tr>
<td>ZP0007</td>
<td>○ High dark rate</td>
</tr>
<tr>
<td>ZP0012</td>
<td>○ External noise</td>
</tr>
<tr>
<td>ZP0015</td>
<td>◎</td>
</tr>
<tr>
<td>ZP0021</td>
<td>○ External noise</td>
</tr>
<tr>
<td>ZP0022</td>
<td>◎</td>
</tr>
</tbody>
</table>