Ge検出器を用いたXMASS検出器材料のスクリーニングとバックグラウンドへの影響の評価

東京大学大学院 理学系研究科 物理学専攻
宇宙線研究所 神岡宇宙素粒子研究施設 岸本研究室
学籍番号 35126067 中川克磨

2014年1月
概要
素粒子物理学・宇宙物理学の分野で現在最も興味を持たれているものの1つとして暗黒物質が挙げられる。これは宇宙に存在する全物質の27％ほどを占めが、光で観測することが不可能な物質である。
そんな暗黒物質の発見を目指す実験として、現在神岡鉱山の地下1000mにある実験施設でXMASS実験が行われている。これは大質量の液体Xeを標的に用いた検出器であり、極低バックグラウンド環境を作ることによって高感度での暗黒物質の直接探索を目指している。
今回XMASS実験はバックグラウンドを低減させ感度を上げるために、検出器の改造を行った。この検出器改造では新たにいくつかの部品を検出器に導入することになるが、その部品の放射性不純物を含んでいた場合そこからの放射線がXMASS検出器のバックグラウンドとなってしまう。そのため新たに検出器に導入する部品は全てHPGe検出器で放射性不純物量を測定し、スクリーニングを行った。その結果、新たに検出器の中心部に導入した部品の放射性不純物は238U系列で0.94±1.70mBq、232Th系列で-0.11±1.50mBq、60Coで-0.16±0.49mBq、40Kで12.6±16.4mBqとなった。これは現在XMASS検出器において最も大きなバックグラウンド源となると考えられている、PMTに含まれる放射性不純物の0.4％程度の量である。
また、特に影響が大きいと思われる部品・放射性核種についてはモンテカルロ・シミュレーションによってそれが作るバックグラウンドのスペクトルを計算し、その影響を評価した。
目次

第1章 暗黒物質
1.1 暗黒物質の発見と観測論的証拠 1
1.2 暗黒物質の残存量 2
1.3 暗黒物質の候補 2
 1.3.1 MACHO 3
 1.3.2 ニュートリノ 3
 1.3.3 WIMP 4
1.4 WIMP 4
 1.4.1 MSSM 4
 1.4.2 ニュートラリーノ 4
 1.4.3 WIMP の検出 5

第2章 XMASS 実験
2.1 検出原理 6
2.2 液体 Xe 6
 2.2.1 液体 Xe の物理的性質 6
 2.2.2 液体 Xe の発光過程 7
 2.2.3 液体 Xe を利用する利点 8
2.3 XMASS800kg 検出器の概要 10
 2.3.1 外部検出器 10
 2.3.2 内部検出器 10
2.4 DAQ システム 12
2.5 キャリプレーション 13
 2.5.1 内部キャリプレーション装置 13
 2.5.2 外部キャリプレーション装置 13
2.6 バックグラウンド 15
 2.6.1 環境由来のバックグラウンド 15
 2.6.2 液体 Xe に含まれる不純物由来のバックグラウンド 16
 2.6.3 検出器材料に含まれる放射性不純物由来のバックグラウンド 17
2.7 検出器改造 18
 2.7.1 バックグラウンドの理解 18
 2.7.2 バックグラウンドの除去 19
 2.7.3 その他の改造点 20

第3章 HPGe 検出器による放射性不純物の測定 21
3.1 測定の目的 21
3.2 HPGe 検出器 21
3.3 測定方法 21
 3.3.1 サンプル準備 22
 3.3.2 HPGe 検出器のデータ取得 23
3.4 測定する放射線 23
3.4.1 238U 系列	..	23
3.4.2 232Th 系列	..	24
3.4.3 60Co	..	24
3.4.4 40K	..	27
3.5 データ解析方法	..	27
3.5.1 ガンマ線検出数の算出	..	27
3.5.2 ガンマ線検出効率の計算	..	28
3.5.3 放射能の計算	..	29
3.6 キャリプレーション	..	32
3.7 放射性不純物のスクリーニング	..	32
3.8 測定結果	..	33
3.8.1 PMT 光電面付近の部品	..	33
3.8.2 PMTホルダーフ付近の部品	..	34
3.8.3 IVC外側の部品	..	35
3.9 結論	..	35

第 4 章 モンテカルロ・シミュレーションによる放射性不純物の影響の計算 37

4.1 モンテカルロ・シミュレーション 37
4.1.1 検出器の形状	..	37
4.1.2 パラメータチューニング	..	39
4.2 再現した放射性核種	..	39
4.2.1 Cu Plate	..	39
4.2.2 Cu Ring	..	40
4.3 エネルギースケールの決定	..	40
4.4 シミュレーション結果	..	42
4.4.1 Cu Plate	..	42
4.4.2 Cu Ring	..	48

第 5 章 残された問題 51

5.1 HPGe検出器による再測定 ... 51
| 5.2 シミュレーションモデルの考察 .. | 51 |

第 6 章 まとめ 52

付 録 A 検出器内での使用を見送った部品 53

付 録 B 測定サンプル情報 54
図 目 次

1.1 銀河の回転曲線 ... 1
1.2 Planck による CMB の温度分布 [4] 2
1.3 反応断面積による暗黒物質残存量 [1] 3
1.4 高い微波背景を背景としてブラックホールのシミュレーション画像 3
1.5 超対称性の導入による結合定数の一覧 4

2.1 Xe の相図 [8] .. 7
2.2 Xe のシチレーション光発生過程 8
2.3 Xe のシチレーション光の減衰 8
2.4 液体 Xe の γ 線自己遮蔽のシミュレーション結果 9
2.5 XMASS 検出器全体像 ... 10
2.6 純水で満たされる外部検出器 11
2.7 XMASS 内部検出器 ... 11
2.8 内部検出器用 2inch PMT .. 12
2.9 PMT ホルダーに設置された PMT 12
2.10 純水タンクの上に設置されたエレクトロニクスハッチ 13
2.11 XMASS 実験の内部キャリプレーション装置の概略図 [13] 14
2.12 内部キャリプレーション装置で使用される線源 [14] 15
2.13 XMASS 実験の外部キャリプレーション装置の概略図 15
2.15 改造前 XMASS800kg 検出器の BG スペクトル [17] 18
2.16 大きな BG 源となっているアルミニウムの位置 [19] 18
2.17 検出器改造で PMT 周辺に導入された部品 19
2.18 PMT に取り付けられた Cu Ring 19
2.19 Cu Plate 取り付け前 (左) と取り付け後 (右) の検出器内部の様子 20

3.1 EVOH シートによって密封されたサンプル 22
3.2 EVOH(エチレン-ビニルアルコール共重合樹脂) の化学式 [10] ... 22
3.3 サンプル準備の手順 .. 23
3.4 238U 系列の崩壊系列図 [12] 25
3.5 232Th 系列の崩壊系列図 [12] 26
3.6 60Co の崩壊図 [11] ... 27
3.7 40K の崩壊図 [11] ... 27
3.8 測定で得られるスペクトル 29
3.9 60Co による 1173keV ピークを拡大した図 30
3.10 Geant4 によるシミュレーション。緑色の円柱がねじの集合体を表している。 31
3.11 シミュレーションによって得られた、ガンマ線の検出効率 31

4.1 Geant4 中で再現されている XMASS800kg 検出器の形状 38
4.2 Geant4 中で再現されている PMT 付近の構造 38
4.3 シミュレーションで仮定した Cu Plate 表面に存在する放射性核種の位置 40
4.4 シミュレーションで仮定した Cu Ring 表面に存在する放射性核種の位置
4.5 57Co の崩壊図 [11]
4.6 スケーリングファクターの計算
4.7 Cu Plate 表面の 238U 系列上流核種が作る BG スペクトル
4.8 Cu Plate 表面の 238U 系列上流核種が作る BG スペクトル（低エネルギー領域）
4.9 238U 系列上流核種を検出器中心で崩壊させたときに見えるスペクトル
4.10 Cu Plate 表面の 232Th 系列核種が作る BG スペクトル
4.11 Cu Plate 表面の 232Th 系列核種が作る BG スペクトル（低エネルギー領域）
4.12 Cu Plate 表面の核種が作る BG スペクトルと実データおよび PMT の放射性核種が作る BG スペクトルとの比較
4.13 Cu Ring 表面の 238U 系列中流核種が作る BG
4.14 Cu Ring 表面の 238U 系列中流核種が作る BG（低エネルギー領域）
4.15 Cu Ring 表面の核種が作る BG スペクトルと実データおよび PMT の放射性核種が作る BG スペクトルとの比較
表 目 次

2.1 Xe の物理的性質 [8] .. 7
2.2 Xe の同位体と天然存在比 [8] 9
2.3 内部キャリプレーションに使用する線源のリスト [15] 14
2.4 代表的な半減期の長い放射性核種 [12] 17

3.1 238U 系列の核種 .. 24
3.2 232Th 系列の核種 ... 24
3.3 線源の放射能とモンテカルロシミュレーション（MC）による検出効率を使った放射能の比較 ... 32
3.4 今回設定したスクリーニングの基準値 32
3.5 PMT 光電面付近に導入される部品の測定結果 (mBq/detector) 33
3.6 質量成分分析による銅部品の放射性不純物量 (上限値、mBq/detector) 33
3.7 PMT ホルダー付近に導入される部品の測定結果 (mBq/detector) 34
3.8 IVC 外側に導入される部品の測定結果 (mBq/detector) 35

4.1 パラメータチューニングによって得られたベストパラメータ 39
4.2 シミュレーションで想定した Cu Plate 表面に存在する核種の量 39
4.3 シミュレーションで想定した Cu Ring 表面に存在する核種の量 40
4.4 238U 系列上流から出る主な放射線 45
4.5 232Th 系列から出る主な放射線 46

A.1 使用を見送った部品の測定結果 53

B.1 サンプル情報 1 PMT 光電面付近の部品 54
B.2 サンプル情報 2 PMT ホルダー付近の部品 54
B.3 サンプル情報 3 水タンク内の部品 54
B.4 サンプル情報 4 スクリーニングの結果使用を見送った部品 55
第1章 暗黒物質

XMASS実験では暗黒物質の直接検出を目指している。本章ではその暗黒物質の概要及び探索方法等について述べる。

1.1 暗黒物質の発見と観測論的証拠

暗黒物質という概念は、1930年代にロシアの天文学者Fritz Zwickyによって提唱された。彼はかみのけ座銀河団にある銀河の運動を測定し、その運動速度が光学的に観測される質量から計算される運動と異なることから、光学的には観測できない重力源の存在を予言した[2]。

その後同様のことが、銀河の回転速度の測定によっても示された。ケプラーの法則より、銀河中心から距離rの位置にある天体の回転速度$v(r)$は

$$v(r) = \sqrt{GM(r)/r} \quad (1.1.1)$$

となる。ここでGは重力定数、$M(r)$は中心から半径rの範囲にある全質量である。図1.1は銀河NGC6503の回転曲線である。銀河内の質量分布が太陽系と同じように中心にその質量の大部分が集中していると考えると、$v(r)$は距離rの$1/2$乗に比例して小さくなっていくはずである（図1.1の破線）。しかし実際の観測結果は図1.1にプロットされた点のように、中心から離れても回転速度はあまり減少しない。これは光学的には観測されない物質が銀河内に広く分布していることを示していると考えられる。このようにして暗黒物質の存在が提唱された。

図1.1: 銀河の回転曲線

暗黒物質の存在の観測的な証拠は、前節で述べたもの以外にも数多く見つかってきている。ここでは代表的なものとして重力レンズ効果について述べる。

重力レンズ効果とは、質量の大きな天体が存在すると一般相対論的な効果によってその背後の天体からの光が曲がって届くという効果である。この光の曲がり方は重力源となっている天体の質量のみによって決まり、その天体の明るさなどには依存しない。そのため背後からの光の曲がり方を調べることによって重力源となっている天体の質量を見積もりることができる。このような効果を利用した手法でも暗黒物質の存在の証拠が示されている。
1.2 暗黒物質の残存量

Planck による宇宙背景輻射 (CMB: Cosmic Microwave Background) の温度ゆらぎの観測によって、宇宙のエネルギー密度は以下の値であると見積もられている [3]。

\[
\Omega_{\text{baryons}} \simeq 0.0490 \pm 0.0007
\]
(1.2.1)

\[
\Omega_{DM} \simeq 0.266 \pm 0.007
\]
(1.2.2)

\[
\Omega_{\Lambda} \simeq 0.686 \pm 0.020
\]
(1.2.3)

ここで \(\Omega_{\text{baryons}} \) はバリオン、\(\Omega_{DM} \) は暗黒物質、\(\Omega_{\Lambda} \) は暗黒エネルギーのエネルギー密度である。これによると宇宙に存在する全エネルギーのうち通常の物質であるバリオンが占める割合は5％に満たず、正体不明の物質である暗黒物質がその5倍以上存在していることになる。

図1.2にPlanckによるCMBの温度分布を示す。CMBは初期宇宙に存在していた光子の名残と考えられている。初期宇宙は高温であり電子が自由に飛び交っていた。その後宇宙の膨張とともに徐々に宇宙は冷えていく。宇宙誕生から38万年後には電子は原子核と結合し、光子は電子との相互作用の影響を受けることなく長い距離を進めるようになった。これを宇宙の暗れ上がりと呼び、この時期のマイクロ波がCMBとして観測される。CMBはほぼ等方的で2.73Kの黒体輻射のスペクトルと良く一致しており、ピックバン説を裏付ける証拠とされている。しかし、CMBは僅かな温度ゆらぎを持っていることもわかており、このゆらぎの情報を詳しく調べることによって宇宙について様々なことが研究されている。

初期宇宙において暗黒物質は対生成・対消滅を繰り返す平衡状態にあったと考えられている。宇宙が膨張し温度が下がっていくと暗黒物質はその数を減らしていくが、やがて対消滅の相手を見つけることができなくなり、一定量に落ち着いてゆく。これが現在まで存在している暗黒物質となっているわけだが、その残存量は暗黒物質が対消滅をする反応断面積の大きさに依存する。反応断面積が大きいほど対消滅が起きやすく、残存量は少なくなっているはずである（図1.3）。ここから逆算すると、暗黒物質の反応断面積の大きさを見積もることができ、その値はWIMPの場合およそ

\[
< \sigma_A v > \simeq 3 \times 10^{-26} \text{cm}^3/\text{s}
\]
(1.2.4)

と見積もられている。

1.3 暗黒物質の候補

暗黒物質の正体としてはいくつかの候補が考えられており、それはバリオンである候補とそれ以外の候補に分けることができる。以下に暗黒物質の主な候補について記していく。
1.3.1 MACHO

MACHO(MAssive Compact Halo Object) はブラックホール、中性子星、白色矮星など大質量を持つが光をほとんど出さないために光学的には観測されない天体の総称である。これはパリオン候補であり、天体物理学的に予想されるものである。MACHO は銀河ハロー内に存在し、銀河内の見えない質量の一部を担っている可能性があるため暗黒物質の候補として考えられていた。このような天体は重力レンズ効果を利用して観測することができ、1990 年代から多くの天体が見つかっているが、MACHO だけでは銀河系の見えない質量の全てを説明することはできないことも明らかになった [5]。また、先に述べた CMB の測定の結果からも暗黒物質はパリオンではないことが示されている [3, 6]。つまり、暗黒物質の正体は星のようなものではないということになる。

1.3.2 ニュートリノ

ニュートリノは電荷を持たず、質量を持ち、物質との相互作用をほとんどしないため素粒子論的に予想される暗黒物質の候補の１つであった。ニュートリノはその存在が比較的早くから確定していたため、以前は有力な候補であると考えられていた。しかし、スーパーカミオオカンデ実験などでわかったニュートリノの質量は現在の宇宙を形作るのに必要な質量よりかなり小さいものであった。また、軽いニュートリノは相対論的に運動する“熱い粒子”であるが、宇宙論的な考察からその粒子が暗黒物質の正体だとすると現在の宇宙の構造を形成することができないことがわかっている。そのためニュートリノも暗黒物質の主成分とは成り得ないことがわかっている。

図 1.4: 天の川銀河を背景としたブラックホールのシミュレーション画像
1.3.3 WIMP

WIMP(Weekly Interacting Massive Particle) は弱い相互作用のみを行う大きな質量を持った粒子のことである。これは素粒子論的に予想される冷たい粒子であり、現在暗黒物質の最有力候補と考えられている。XMASS 実験もこの WIMP の直接検出を目指している。これについては次節で詳しく述べる。

1.4 WIMP

この節では暗黒物質の最有力候補と考えられており、XMASS 実験で検出することを目指している WIMP の詳細について述べる。

1.4.1 MSSM

WIMP は電荷を持たない、非対称論的速度を持つ冷たい粒子であり、安定して存在することができるため現在では暗黒物質の正体の最有力候補と考えられている。しかしこのような粒子は標準模型の枠組みの中には存在しないため、この枠組みを拡張する必要がある。ここで標準模型に最小限の超対称性理論 (SUSY) に基づいた拡張を行った理論である MSSM(Minimum Supersymmetric Standard Model) というモデルを考える。超対称性理論は、標準模型において電弱相互作用と強い相互作用を統合させる際にそれらの結合定数が一致しないとという問題を解決するために要請される。図 1.5 は結合定数が一致する様子を示している。左が標準模型のみの場合、右が超対称性を導入した場合であり、超対称性を導入すると高エネルギー領域で（上から順に）電磁相互作用、弱い相互作用、強い相互作用の結合定数が一致することがわかる。SUSY では標準模型の粒子に対してスピンが 1/2 だけ小さい粒子を超対称性パートナーとして考える。つまり標準模型のフェルミオンと対になるボゾン、標準模型のボゾンと対になるフェルミオンが存在することになる。超対称性理論における保存則のひとつに R バリティの保存がある。これは標準粒子の R バリティは+1、超対称性粒子の R バリティは-1 であり、複数の粒子間の相互作用の前後でこの積が保存するというものである。この保存則より、標準粒子が偶数個の超対称性粒子へ崩壊する変化は許されるが、单一の超対称性粒子が標準粒子のうえへ崩壊する反応は許されないことになる。粒子の質量が軽くなる方向へ崩壊していくため、超対称性粒子のうち最も軽いもの (LSP: Lightest Supersymmetric Particle) は崩壊を極端に安定であると考えられる。MSSM での LSP はニュートラリーノである。

1.4.2 ニュートラリーノ

ニュートラリーノ $\tilde{\chi}$ は MSSM で予想される粒子であり、フォティーノ、ジーノ Z、2 つの中性ヒグシーノ \tilde{H}_u と \tilde{H}_d (それぞれフォトン、Z ボゾン、ヒッグス粒子の超対称性パートナー) の 4 の相互作用固有状態の線型結合で表わされる質量固有状態である。これを数式で表すと、混合行列 M を用いて次式のようになる。

図 1.5: 超対称性の導入による結合定数の一致

\[
\begin{pmatrix}
\tilde{\chi}_0 \\
\tilde{\chi}_1 \\
\tilde{\chi}_2 \\
\tilde{\chi}_3 \\
\end{pmatrix}
= M
\begin{pmatrix}
\tilde{\gamma} \\
\tilde{Z} \\
\tilde{H}_u \\
\tilde{H}_d \\
\end{pmatrix}
\]

(1.4.1)

このようにニュートラリーノには 4 種類の質量固有状態があり、そのうち最も軽いものが LSP であり、
暗黒物質の候補となる。

1.4.3 WIMP の検出

WIMP の検出方法は大きく分けて直接検出と間接検出がある。直接検出とは WIMP を標的となる粒子
と相互作用させ、その粒子を調べる方法であり、間接検出とは WIMP 同士が対消滅をするときに生じ
る粒子を見る方法である。XMASS 実験では WIMP の直接検出を目指している。

直接検出

直接検出では WIMP と通常の物質との弾性散乱を観測する。WIMP の質量が核子の 100 倍程度の場
合、観測する標的として同じ程度の質量を持つ原子核が妥当である。WIMP の反応は非常に稀であり、
その散乱断面積は核子のスピンに依存する場合と依存しない場合とに分けて考える必要がある。

スピンに依存する相互作用

スピンに依存する相互作用は逆向きのスピン同士が作用を打ち消し合ってしまうため、標的となる原子
核が奇数の質量数を持つ場合にだけ実質的な寄与がある。しかし、WIMP の信号が見えると考えられ
ている低エネルギー領域では、スピンに依存しない相互作用と比べて断面積を稼ぐことができない。

スピンに依存しない相互作用

スピンに依存しない相互作用の場合、コヒーレントな相互作用の場合に大きな散乱断面積を得るこ
とができ、その断面積は原子核の質量数を A とすると A^2 の値に比例する。そのため標的とする原子は
質量数の大きいものが適している。

間接検出

間接検出は WIMP 同士の反応の結果を見る。WIMP 同士は対消滅を起こすと考えられており、それ
は大きな質量を持つ天体付近の空間では高い頻度で起きているはずである。そこで太陽からのニュート
リノなどを観測することによって WIMP の存在を確かめようという実験も行われている。
第2章 XMASS実験

XMASS実験は岐阜県飛騨市神岡町の神岡鉱山内地下1000mにある地下実験施設で行われている、液体Xeを利用した多目的実験である。XMASSという名称は以下のように実験の目的を表わしている。

- Xenon detector for weakly interacting MASSive particle
- Xenon MASSive detector for solar neutrinos
- Xenon neutrino MASS detector

XMASS実験はその構想が2000年に想起され、1st phaseとして100kgのXeを用いたプロトタイプ検出器を作り、検出器の様々なシステムやバックグラウンドについての研究を行った。現在は2nd phaseとして1トンのXeを用いた800kg検出器によって暗黒物質探索実験を行っている。将来的には10トンクラスまで検出器を拡大し、暗黒物質探索と共に太陽ニュートリノの測定や0νββ崩壊の測定などを行ってゆく。また現在でも太陽アクシオン測定など他の測定も試みられている[7]。

2.1 検出原理

XMASS検出器では暗黒物質の最有力候補と考えられているWIMPの直接検出を目的としている。その検出原理はシンプルで、WIMPが検出器内のXeの原子核と弱い相互作用をしたときに発せられるシナチレーション光をPMTで捕らえるというものである。通常の物質とWIMPとの相互作用は非常に稀であるため、このような実験では標的となる物質の量を増やすこととともにノイズとなる放射性バックグラウンドをどこまで減らすことができるかという点が重要になる。そのためXMASS実験では、専用のPMTの開発やXe内の不純物の除去などの低バックグラウンド化を徹底している。

XMASS実験では液体Xeを標的として利用しているが、Xeには素粒子検出に適したさまざまな利点があり、多くの素粒子実験がXeを利用して行われている。次節では液体Xeの諸性質や利点等について述べる。

2.2 液体Xe

XMASS実験では液体Xeを検出器の標的として利用している。ここでは液体Xeについて詳しく述べる。

2.2.1 液体Xeの物理的性質

Xeは原子番号Z=54の希ガス元素である。Xeの物理的性質を表2.1にまとめた。また図2.1はXeの相図であり、横軸は温度(K)、縦軸は絶対圧力(atm)である。Xeの沸点は1気圧で〜165Kと高いため、液体窒素(77K)を用いることで容易に液化することができる。
表 2.1: Xe の物理的性質 [8]

<table>
<thead>
<tr>
<th>物理量</th>
<th>値</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>原子番号 Z</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>原子量 A</td>
<td>131.30</td>
<td></td>
</tr>
<tr>
<td>沸点</td>
<td>165.05 K</td>
<td>1 atm</td>
</tr>
<tr>
<td>融点</td>
<td>161.4 K</td>
<td>1 atm</td>
</tr>
<tr>
<td>三重点 T_i</td>
<td>161.3 K</td>
<td></td>
</tr>
<tr>
<td>P_i</td>
<td>0.794 atm</td>
<td></td>
</tr>
<tr>
<td>ρ_i</td>
<td>3.08 g/cm³</td>
<td></td>
</tr>
<tr>
<td>屈折率</td>
<td>1.54 - 1.69</td>
<td>液体</td>
</tr>
</tbody>
</table>

図 2.1: Xe の相図 [8]

2.2.2 液体 Xe の発光過程

Xe がシンチレーション光を出す発光原理は、原子が励起されるものとイオン化されるものの 2 種類がある。

原子が励起されたとき

$$ Xe^* + Xe \rightarrow Xe_2^* $$ (2.2.1)

$$ Xe_2^* \rightarrow 2Xe + h\nu $$ (2.2.2)

原子がイオン化されたとき

$$ Xe^+ + Xe \rightarrow Xe_2^+ $$ (2.2.3)

$$ Xe_2^+ + e^- \rightarrow Xe^{**} + Xe $$ (2.2.4)

$$ Xe^{**} \rightarrow Xe^* + 熱 $$ (2.2.5)

$$ Xe^* + Xe \rightarrow Xe_2^* $$ (2.2.6)
式 2.2.2 と式 2.2.7 を見ればわかるように、どちらの過程でも最終的には同じ反応で発光する。そのため最初の反応が励起イオン化化に関わらず同じシンチレーション光（中心波長175nm の紫外線）を生じる。

Xe と相互作用をしたのが WIMP や α などの重い粒子であった場合、はじめに原子核反跳が起こり、反跳された原子核が周囲の Xe をイオン化する。そのため 2 種類の過程の両方によって発光することになる。一方で Xe と相互作用したのが β や γ であった場合には電子反跳が起こるので、発光過程としてはイオン化によるもののみが起こる。

また、入射粒子によってシンチレーション光の減衰の仕方が異なることもわからっている。図 2.3 にその様子を示す。これを見ると軽い粒子ほど光の減衰時間が長くなっていることがわかる。この発光時定数の差を利用してイベントの種類を識別することができる。

図 2.2: Xe のシンチレーション光発生過程
図 2.3: Xe のシンチレーション光の減衰

2.2.3 液体 Xe を利用する利点

液体 Xe には WIMP 探索において数多くの利点が存在する。本節では液体 Xe の利点について詳しく述べる。

高発光量

XMASS 実験では WIMP と Xe 原子核の弾性散乱事象を見ようとしているが、WIMP の運動エネルギーは数十 keV と非常に低く、WIMP が検出器内に落とすエネルギーは非常に小さいと考えられる。そのため検出器には低いエネルギー閾値を持つことが要求されるが、Xe は発光量が大きいためこの条件を満たしやすくなる。また、Xe のシンチレーション光の波長は 175nm と他の希ガス元素と比べて長いため、PMT で検出するのに適している。

γ線の自己遮蔽効果

Xe の原子番号は Z=54 と大きく、γ線を遮蔽する力が強い。そのため Xe に入射した γ線は急激に減衰し、中心部にはほとんど届かない。これによって検出器の中心部には γ線バックグラウンドフリー
な環境を作り出すことができる。図 2.4 は液体 Xe にγ線が入射したときのシミュレーション結果を示す。青線がγ線の軌跡である。ピンク色の中心部分（半径 20cm）にはγ線がほとんど届いていないことがこの図からわかる。このγ線の届かない半径 20cm 以内の領域を有効体積と呼び、およそ 100kg の Xe が含まれる。

![図 2.4: 液体 Xe のγ線自己遮蔽のシミュレーション結果](image)

容易な運用条件

XMASS実験では検出器を-100℃程度の温度に保って運用している。これは Xe の三重点に近い条件であり、僅かな操作によって液相、気相の両方を利用することができる。このため Xe の純化を行う循環ラインを通してといった操作が容易であり、長期間の連続実験が行えやすくなる。

また Xe は-100℃付近の密度が 2.96g/cm³ と大きいので、同じ質量の標的をよりコンパクトな検出器に収めることができる。将来的な大型化を視野に入れると、これは大きな利点となる。

豊富な同位体の存在

Xe には豊富な同位体が存在する。前章で述べた通り、スピンに依存する相互作用は質量数 A が奇数の原子核との相互作用の断面積が大きくなる。Xe は質量数が奇数の同位体も持っており、またその天然存在比がわかっているためスピンに依存する相互作用を観測するのに有利である。表 2.2 に Xe の同位体とその天然存在比を示す。

<table>
<thead>
<tr>
<th>同位体</th>
<th>天然存在比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>124Xe</td>
<td>0.09</td>
</tr>
<tr>
<td>126Xe</td>
<td>0.09</td>
</tr>
<tr>
<td>128Xe</td>
<td>1.92</td>
</tr>
<tr>
<td>129Xe</td>
<td>26.44</td>
</tr>
<tr>
<td>130Xe</td>
<td>4.08</td>
</tr>
<tr>
<td>131Xe</td>
<td>21.18</td>
</tr>
<tr>
<td>132Xe</td>
<td>26.89</td>
</tr>
<tr>
<td>134Xe</td>
<td>10.44</td>
</tr>
<tr>
<td>136Xe</td>
<td>8.87</td>
</tr>
</tbody>
</table>
2.3 XMASS800kg検出器の概要

XMASS実験800kg検出器は純水で満たされた外部検出器と液体Xeで満たされた内部検出器によって構成されている。図2.5に検出器の全景を示す。

図2.5: XMASS検出器全体像

2.3.1 外部検出器

外部検出器は直径10m、高さ10mの円柱形の純水タンクであり、内部には内側向きに20inchPMTが72本取り付けられている。外部検出器の役割は宇宙線μ粒子や環境中性子などによるバックグラウンドの削減である。外部検出器はSuper Kamiokandeでも使われているものと同一システムで作られた純水で満たされており、同じくSuper Kamiokandeで用いられている実験のあるPMTを設置することによって宇宙線などのアクティブシールドとしての機能を持っている。

2.3.2 内部検出器

内部検出器（図2.7）はPMTホルダーと、それを囲むIVC(Inner Vacume Chamber)、さらにそのすぐ外側のOVC(Outer Vacume Chamber)で構成されている。PMTホルダー内部は-100℃程度の液体Xeで満たされている必要があるため、IVCとOVCの間を真空にすることによって断熱し、外側が凍結してしまうことを防いでいる。PMTホルダーは三角形を5つ組み合わせた5角錐12個を正12面体のように組み立てた、球に近い形状をしている。ここに2inchPMT（図2.8）が計642本取り付けられている。このPMTはXMASS実験のために浜松ホトニクスと共同で開発したものであり、含まれる放射性不純物を線界まで減らし、また-100℃程度の低温でも動作するように作られたものである。このPMT
図 2.6: 純水で満たされる外部検出器

の光電面は六角形の形をしており、これによって検出器内側に隙間なく PMT を設置でき、高い光電面被覆率を実現している。図 2.9 は PMT を取り付けた PMT ホルダーの様子である。PMT ホルダーの内側には約 800kg の液体 Xe が存在しており、これが WIMP 探索の標的となる。PMT ホルダー、IVC および OVC は全て無酸素銅できている。これは無酸素鋼は放射性不純物量の少ないものを精製・加工する技術が確立されており、また比較的安価に作ることができたためである。

図 2.7: XMASS 内部検出器
2.4 DAQ システム

純水タンクの上部には XMASS 実験のデータ取得用のモジュールを収容するエレクトロニクスハットが設置されている（図 2.10）。ここには ATM (Analog Timing Module) と FADC (Flash Analog to Digital Converter) が設置されている。エレクトロニクスハットの内部は温度変化による影響を抑えるため、室温が常に約 20℃ に保たれている。

ATM

ATM は信号の電荷を知るための QAC (charge-to-analog converter) と信号のタイミング情報を知るための TAC (time-to-analog converter) が 1 つになったものである。1 ボードで 12 チャンネルの PMT からの信号を取り扱うことができる。XMASS 実験では内部検出器の 2inch PMT と外部検出器の 20inch PMT からの信号を 60 ボードの ATM で取得している。

FADC

FADC は入力されたアナログ信号を連続的にデジタル信号に変換するモジュールである。XMASS 実験で用いられている FADC は 500MHz のサンプリングレートで連続的に AD 変換する [9]。
2.5 キャリプレーション

検出器内で起こった事象のエネルギー・位置などを PMT からの情報から正確に求めるためには、既知のエネルギー・事象を検出器内で発生させ、その発光が PMT を通じてどのように見えるのかを知っておく必要がある。このための 2 種類のキャリプレーション装置が XMASS 検出器には備わっている。1つは検出器の内部に直接線源を入れる内部キャリプレーション装置であり、もう 1つは検出器の外側から線源を当てる外側キャリプレーション装置である。ここではこの 2 種類の装置についてそれぞれ説明する。

2.5.1 内部キャリプレーション装置

図 2.11 に内部キャリプレーション装置の概略図を示す。これは検出器の内部にγ線源などを置いてデータを取るための装置である。線源を直接検出器の内部に置くことができ、発光イベントを意図した場所で集中的に起こすことができ、検出器の性能を評価するのに有用なデータを取得することができる。

この装置では内部検出器の一番上の頂点 PMT を一時間に取り外し、そこから線源を検出器内部に挿入する。線源はステンレス製のワイヤーで吊るされ、水タンクの上部に設置されたステッピングモーターで位置の調整を行う。線源は検出器中心を通る軸上を鉛直方向にのみ上下することができる。検出器はほぼ球形であるため、中心を通る軸上の任意の点でのデータが取れれば検出器全体の任意の位置でのデータが得られることに相当する。図 2.12 は内部キャリプレーションに使用される線源である。左が 57Co、右が 241Am の線源であり、この部分を付け換えて使う。表 2.3 に内部キャリプレーションに用いる線源のリストを示す。

2.5.2 外部キャリプレーション装置

図 2.13 に外部キャリプレーション装置の概略図を示す。これは内部検出器の外側に沿って設置されたホースの中に線源を通し、検出器外からγ線を当てるための装置である。このように外側からγ線を当てたデータを取ることで、γ線に対する液体 Xe の自己遮蔽の効果を確かめることができる。また、検出器内壁に極めて近い部分で起こったイベントが検出器中心付近でのイベントだと誤って判断されて
図 2.11: XMASS 実験の内部キャリブレーション装置の概略図 [13]

表 2.3: 内部キャリブレーションに使用する線源のリスト [15]

<table>
<thead>
<tr>
<th>級種</th>
<th>エネルギー [keV]</th>
<th>強度 [Hz]</th>
<th>直径 [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{55}Fe</td>
<td>5.9</td>
<td>350</td>
<td>1.42</td>
</tr>
<tr>
<td>^{109}Cd</td>
<td>22, 25, 88</td>
<td>800</td>
<td>1.42</td>
</tr>
<tr>
<td>^{241}Am</td>
<td>59.5</td>
<td>485</td>
<td>0.21</td>
</tr>
<tr>
<td>^{57}Co</td>
<td>122</td>
<td>100</td>
<td>0.21</td>
</tr>
</tbody>
</table>

しまうという問題がわかっているが、この問題の解明にもこのようなデータは有用であると考えられている。

線源を通すためのホースは図 2.13 のように検出器の下から回り込むような U 字型をしており。このホースの中には予めワイヤーが通ってあり、そこに線源を固定して逆側からワイヤーを引き上げることによって線源を目的の位置まで移動させる。このワイヤーには目印がつけられており、その位置までワイヤーを引き上げれば逆側につけられた線源が目的の位置に到達したことがわかるようになっている。この目印は線源が検出器重心の真横にくる位置（2ヶ所）と真下にくる位置の計3ヶ所につけられている。このように線源の位置を決めるため、その精度は誤差が3cm程度であると考えられている。
図 2.12: 内部キャプレーション装置で使用される線源 [14]

図 2.13: XMASS 実験の外部キャリプレーション装置の概略図

2.6 パックグラウンド

本実験のパックグラウンド (BG) には、大きく分けて実験室の環境由来の BG、液体 Xe 内部の不純物由来の BG、検出器材料中の放射性不純物由来の BG の 3 つがある。ここではこれらについて説明する。

2.6.1 環境由来のパックグラウンド

ミューティ

宇宙線の陽子などによって大気中で生じるミューティは BG 源になる。XMASS 実験は地下 1000m の神岡実験施設にあるため、地上と比べこの影響は小さく、ミューティのフラックスは 5 桁小さくなっている。また本実験ではミューティ由来のイベントを除去するために、外部検出器に設置した 20inch PMT からのデータを使用することができます。
高速中性子

高速中性子は物質の原子核と弾性散乱を起こすが、これは暗黒物質が起こす原子核との弾性散乱と区別することができない。そのため高速中性子はXMASS実験のBG源となる。高速中性子は主に岩盤中の放射性核種が崩壊するときに出るα線が他の原子核と反応することによって生じる。高速中性子は自身と質量が近い（つまり軽い）原子核と弾性散乱したときに大きなエネルギーを失いない。そのため水素原子を多く含む水は高速中性子の遮蔽体に適しているといえる。XMASS実験では外部検出器中の純水がこの遮蔽体としての役割を果たしており、岩盤からの高速中性子を遮蔽するのに十分な厚さの純水の層がある。

ラドン (Rn)

神岡鉱山内の空気は地上に比べラドン濃度が、季節にもよりが最大で30倍ほど大きい。そのため実験室内の空気には含まれる放射性のラドン（222Rnなど）がBG源となりえる。これを防ぐためXMASS実験が行われる実験室には、活性炭などを用いてラドンを除去したラドンフリーエアーが常に送り込まれている。このラドンフリーエアーのラドン濃度は数mBq/m³であり、鉱山内の空気より4-6桁程度低いラドン濃度となっている。

PMTホルダー表面の放射性核種

PMTホルダーは放射性不純物をほとんど含まない無酸素鋼でできているが、その表面に付着した放射性不純物は問題となる。特に上で述べた空気中のRnが鋼表面に付着した後系列崩壊し、半減期が22年と長い210Pbとなって検出器内に残るBG源となっていることが知られている。このような無酸素鋼表面に付着した放射性核種は表面を直接研磨することで取り除くことができると確認されている。ただし、電解研磨後の工程でRnが付着すると問題となる。

2.6.2 液体 Xe に含まれる不純物由来のバックグラウンド

液体Xeには放射性不純物として3H、85Kr、214Pbなどが含まれている。これらからの放射線は検出器内で直接生じるため遮蔽などによって防ぐことはできず、Xe中から除去する必要がある。特に85KrはXeを空気中から生成する過程で混入してしまうことがわかっており、この崩壊によって出るβ線の連続スペクトルは暗黒物質のシグナル領域に重なるためXMASS実験において問題となると考えられている。図2.14に85Krの崩壊図を示す。

XeとKrでは沸点が異なるため、蒸留することによってこれらを分離することができる。XMASS実験では実験室内に設置された蒸留装置によって蒸留が行われている。この装置ではXe中のKr濃度を5桁低減できる性能があると確認されており、これによってXMASS検出器内の液体Xe中のKr濃度は2.7ppt以下であると確かめられている。これは他のBG源と比べて問題にならないレベルであるとわかっている[15]。
2.6.3 検出器材料に含まれる放射性不純物由来のバックグラウンド

私たちの身の回りにある物質にはごく微量ながら様々な放射性不純物が混ざっている。これらから出てくる放射線は通常問題とならないレベルだが、XMASS実験のような極低BG実験では検出器部品に含まれる微量な放射性不純物からの放射線も問題となってくる。特に半減期の長い核種（表2.4に代表的なものをまとめる）が不純物として存在するとそれは検出器内で長期間にわたって放射線を出し続けるため大きな問題となる。このため本論文では新たに検出器に導入する部品を全てHPGe検出器で測定し、放射性物質のスクリーニングを行った。このことに関しては第3章で詳細に述べる。

また現在検出器に使われている部品の中にも、含まれる放射性不純物が問題となっていると考えられているものがいくつかある。

これらの既知のBG低減のために、XMASS実験では大規模な検出器改造を行った。このことについて次節で詳しく述べる。

表2.4: 代表的な半減期の長い放射性核種 [12]

<table>
<thead>
<tr>
<th>放射性核種</th>
<th>半減期</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{238}U</td>
<td>44億年</td>
</tr>
<tr>
<td>^{232}Th</td>
<td>141億年</td>
</tr>
<tr>
<td>^{60}Co</td>
<td>5.27年</td>
</tr>
<tr>
<td>^{40}K</td>
<td>13億年</td>
</tr>
</tbody>
</table>
2.7 検出器改造

XMASS800kg 検出器では世界最高感度での暗黒物質探索実験を行うため徹底した BG の低減を行ってきたが、予期せぬ BG が存在していた。これらの BG 源はこれまでの研究によってほぼ特定されている。そのためさらなる BG 低減のため、2013 年秋までにかけて大規模な検出器改造を行った。ここではこの検出器改造について記す。

2.7.1 バックグラウンドの理解

図 2.15 は XMASS800kg 検出器改造前の BG の内訳を示している。これは Ge 検出器による測定によってわかった各部品が含まれ放射性不純物が出す放射線の影響を、モンテカルロ・シミュレーションによって計量したものである。黒色で示された線が実際に測定されたデータ、色つき部分がシミュレーションで計算したそれぞれの部品の含む放射性核種からの影響である。ここで PMT AI と表記されているものは PMT のクォーツ面を圧着するために用いられたアルミニウム（図 2.16 参照）のことであり、ここに含まれる放射性不純物が最も大きな BG 源となっていることがわかる。このアルミニウムは検出器内の液体 Xe に直接面した位置にあるため、ここから出した α 線や β 線がアルミのすぐ近くで発光するといったイベントが問題となる。

また黄色で示される「PMT gamma」は PMT のその他の部分に含まれる放射性不純物からの γ 線の影響である（この放射性不純物は PMT ホルダーによって検出器内側から隔離された位置にあるため、ここからの α 線などの影響は無視できる）。

図 2.15: 改造前 XMASS800kg 検出器の BG スペクトル [17]

図 2.16: 大きな BG 源となっているアルミニウムの位置 [19]
2.7.2 パックグラウンドの除去

すでに述べたように、主要な BG 源となっているのは PMT に使われているアルミニウムに含まれる放射性不純物であるということがわかっていたが、検出器改造で全ての PMT を新たに作り直し取り替えるというのは現実的ではない。そのためここでは放射性不純物を多く含むアルミニウムの周辺を取り除く遮蔽板を新たに設置することにより、そこから出る放射線（α 線）による発光を閉じ込めることによってこれが BG となることを防ぐという方法をとった。図 2.17 に今回導入した遮蔽板の図を示す。今回の改造では無酸素銅製の PMT 光電面側面を覆うリング (Cu Ring) と、同じく無酸素銅製でリングの上に被せるプレート (Cu Plate) の 2 種類の遮蔽板を作成し検出器に導入した。また PMT クーツの側面に高純度のアルミニウムを蒸着することによって、リングとクォーツの隙間で α 線が発光するようなイベントの光を完全に閉じ込める構造にした。

これらの新部品の導入によって PMT のアルミニウムに含まれる放射性不純物由来の BG (図 2.15 のピンク・緑色部分など) を改造前の 1/10 程度にまで落とすことができるであろうことが、モンテカルロ・シミュレーションによる研究でわかっていた。一方で PMT 本体に含まれる放射性不純物由来の BG (図 2.15 の黄色部分) は改造後もこのまま残り続けることになる。まとめると、改造後検出器の主要な BG となるのは PMT のアルミニウム由来のものでまるであるが、その量は一桁程度減り、主要ではない BG として PMT 本体由来のものが残るということになる。

これらの部品はやはり液体 Xe に直接面した位置に導入されるため、ここに含まれる放射性不純物の影響はとても大きい。そのためこれらの部品は導入前に HPGe 検出器による γ 線測定にかかることによっ放射性不純物量が十分少ないことを確認した。第 3 章ではこのことについて詳しく述べる。

図 2.17: 検出器改造で PMT 周辺に導入された部品

図 2.18: PMT に取り付けられた Cu Ring
2.7.3 その他の改造点

前に述べたアルミニウムからの BG 以外にも様々な要因からの BG がわかっており、今回の改造ではそれらを低減するための努力も行った。以下にその他の改造点について簡単に述べる。

銅表面の電解研磨

XMASS 検出器には多くの無酸素銅が使われているが、その表面に付着した放射性核種（210Pb, 210Po など）から出る放射線が BG となることがわかっていった。そのため無酸素銅の表面部分を電解研磨することによってこれらの放射性核種を取り除き、BG 低減を目指した。

GORETEX

改造前検出器では PMT ホルダーの後ろでの発光が検出器中心部に漏れることを防ぐため、PMT と PMT ホルダーの間に GORETEX を挟んでいた。しかし、後にこれが低エネルギー領域の BG 源となっている可能性があることがわかかった。今回の改造では Cu Ring と Cu Plate を導入したことによって背面からの光漏れも同時に防げるようになったため、光漏れ防止用の GORETEX は不要となりこれを除去した。

溝でのイベント

改造前検出器は検出器の内側から見ると PMT 光電面が PMT ホルダーからやや突き出した構造となっており、ホルダーと PMT の間の溝がむき出しとなっていた。しかし、この溝で発光するようなイベントが起きたとき、その光は中心部での発光とは異なり全方向に均一なものとはならず、その結果発光パターンからイベント位置を正確に求めることができなくなってしまうという問題が生じていた。今回の改造で Cu Plate を導入したことによって、検出器内側の凹凸がほぼなくなり、このような問題を減少させることができると考えられている。
第3章 HPGe検出器による放射性不純物の測定

3.1 測定の目的

XMASS実験では暗黒物質探索のために極低バックグラウンド(BG)環境を作る必要がある。BGの原因となるものはいくつかあるが、その1つとして検出器材料に含まれる放射性不純物からの放射線がある。このためXMASS検出器の改造で新しく導入する部品を通じたHPGe検出器で測定することによって放射性不純物のスクリーニングを行った。そしてその測定結果を、改造後のXMASS検出器において重要なBG源となると考えられているPMT由来のガンマ線と共比較することによって使用可能な部品を選び、また使用した部品が作るBGを見積もった。

3.2 HPGe検出器

HPGe検出器(High Purity Germanium detector)はサンプルからのγ線量を測定するための半導体検出器である。半導体としてGeを用いる検出器のうち、特に高純度のGe結晶を使用しているものをいうぶふ。

半導体は4価の元素の結晶でできており、不純物として3価の元素を含むP型半導体と、5価の元素を含むN型半導体がある。P型半導体内では正孔、N型半導体内では電子がキャリアとなっている。半導体の片側はP型、反対側がN型となっているようなものをPN接合という。このPN接合に逆バイアス電圧をかけることによって、中心部には空乏層と呼ばれるキャリアの存在しない領域を作ることができる。この空乏層にγ線が入ると原子と相互作用をし、エネルギーを落として多数の電子正孔対を生成する。空乏層に逆バイアス電圧がかけられているため、生じた電子や正孔はそれぞれ電極に集められていく。こうして集まった電荷を測定することによってγ線を検出するというのが半導体検出器の仕組みである。

Geは同じく半導体検出器によく使われるSiと比べて原子番号が大きい(ZSi=14, ZGe=32)ため、γ線の検出において困難を伴う。γ線と物質との光電効果の反応断面積はZの5乗に比例するため、GeはSiと比べて60倍以上の反応断面積を持つことになる。またGe検出器の特徴として、電子正孔対を作るのに必要なエネルギーが小さいため、他のγ線検出器と比べてとても高いエネルギー分解能を持つことが挙げられる。例えば60Coから出る1.33MeVのγ線のエネルギー分解能は0.15%となる。高いエネルギー分解能はγ線ピークを分離し、サンプルに含まれる放射性核種を観察する際に非常に重要となる。

一方Ge検出器には、Ge結晶の価電子帯と伝導帯の間のバンドギャップが狭いため、常温では電子が熱励起することによってノイズを生じてしまうという欠点がある。このためGe検出器を運用する際は、常に液体窒素温度(77K)に冷却しておく必要がある[20][21]。

3.3 測定方法

測定には神岡の地下実験施設内に設置されている3台のHPGe検出器を用いた。この3台のHPGe検出器は低バックグラウンド測定用に特別に作られたものであり、これを地下実験施設に設置することによってさらに高感度で放射能を測定することを可能とした。またこれらの検出器の試料室にはRn濃度が数mBq/m³以下のラドンフリーエアガが流量4.5L/minで流されている。各サンプルの測定時間はそのサンプルの分量や目的感度によって数日〜2週間程度とした。また1か月に1度程度は1週間以上の
BG測定を行うことを目標としていたが、サンプル数が多い時期はBG測定の頻度が減ってしまった。各測定のBGはその測定の前後で最も近い時期に行われたBG測定のデータを用いて解析を行った。

3.3.1 サンプル準備
HPGe検出器でサンプルを測定する際には、写真のように密封処理をしてから検出器に入れ、測定を行った。このサンプルを包む透明な袋はEVOHシートであり、ガスパリア性が非常に優れている[10]。EVOHとはエチレン-ビニルアルコール共重合樹脂のことであり、図3.2にEVOHの化学式を示す。サンプルをEVOHシートでつつむのは二つの目的がある。1つはサンプルに空気中のラドンが混入するのを防ぐこと、そしてもう1つはサンプル中から出てくる可能性のあるラドンを逃がさないことである。

図3.1: EVOHシートによって密封されたサンプル

図3.2: EVOH(エチレン-ビニルアルコール共重合樹脂)の化学式[10]

ここでHPGe検出器で測定する際のサンプル準備の手順を説明する（図3.3）。はじめに測定サンプルに汚れがある可能性がある場合、サンプルをエタノールまたはイソプロピノールによって超音波洗浄した。これらは有機溶剤であり、油などの汚れを落とすのに適している。超音波洗浄とは水や有機溶剤の液体に超音波を伝導させて微細な気泡を作り出し、この気泡が破壊するときに生じる衝撃波によってサンプル表面の汚れを落とすというものである。洗浄されたサンプルはEVOHシートの袋に二重に入れ、その口をシーラーで封じた後に地下のHPGe検出器のところへ運ばれる。このときEVOHシートを二重にするのは、測定時に検出器に入れられる内側の袋に運搬の際にラドン等が吸着するのを防ぐためである。地下に運ばれたサンプルは検出器に入れられる直前に外袋を空けられ、内袋内の空気をラドンフリーエアーで置換した後に内袋の口を密閉され、検出器に入れられる。この際、図3.3のように袋にラドンフリーエアーを充填させ、袋内の空気を抜くということを5回以上繰り返した。以上がHPGe検出器で測定する際のサンプル準備の流れである。
3.3.2 HPGe検出器のデータ取得

HPGe検出器の測定データは、電流パルスの形で得られる。この電流パルスはまず電荷型前置増幅器（プリアンプ）に送られ、電流パルスから電圧パルスに変換される。この前置増幅器は雑音を減らすため、液体窒素を貯めているデューワに取り付けられている。変換された電圧パルスは次に主増幅器（メインアンプ）に送られ、パルスの幅と形状が行われる。その後そのパルスはMCAに送られてデジタル信号に変換される。本測定ではチャンネル数は8192（=2^{13}）であり、この1チャンネルは0.4keVに対応している。

3.4 測定する放射線

3.4.1 238U系

図3.4は238U系列の変化系列図である。この系列は自然界に始まりから存在する238Uの崩壊から始まり、安定な206Pbになるまで崩壊を繰り返していく系列である。238Uの半減期は45億年と非常に長いため、もし238Uが放射性不純物として検出器内部中に含まれていれば、BGとなるガンマ線を出し続けることになる。変化系列において放射平衡が成り立っているとすると、すべての核種の崩壊が単位時間当たり同数だけ起きていることになり、すべての核種が同じBq数検出されるはずである。しかし図3.4を見てわかるように、この系列の途中には比較的半減期が長いものが含まれており、そのためその核種の前後では放射平衡が成り立たない可能性がある。そこで今回の測定ではこの238U系を、比較的半減期の長い230Thと210Pbの前後で3つの系列に分け、それぞれU系列上流、U系列中流、U系列下流と呼ぶことにした。そしてこの3種類の系列内では放射平衡が成り立っていると仮定してそれぞれの放射能を求めた。ただし、本論文では寿命に注目してこのような3つの系列に分けたが、このうち中流では222Rnがガスとして気体中に存在していることに注意が必要である。測定サンプルの準備中は坑道内の
高ラドン濃度空気がサンプル袋に入ったり、サンプル表面に付着することがあると、この中流の放射線量測定の結果に大きな影響を与えることになってしまう。

表3.1に238U系列の核種によるピークのうち、今回解析に使用したものを示す。解析に使用するピークは1.分岐比の大きいもの 2.HPGe検出器の検出効率がよいエネルギー領域にあるもの 3.近くにある他のピークの影響を受けないものという条件で選んだ。

<table>
<thead>
<tr>
<th>核種</th>
<th>系列</th>
<th>エネルギー (keV)</th>
<th>分岐比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>234Th</td>
<td>上流</td>
<td>63.29</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93</td>
<td>5.4</td>
</tr>
<tr>
<td>234Pa</td>
<td>上流</td>
<td>1001</td>
<td>0.84</td>
</tr>
<tr>
<td>214Pb</td>
<td>中流</td>
<td>352</td>
<td>37.64</td>
</tr>
<tr>
<td>214Bi</td>
<td>中流</td>
<td>609</td>
<td>44.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1764</td>
<td>15.42</td>
</tr>
<tr>
<td>210Pb</td>
<td>下流</td>
<td>46.5</td>
<td>4.3</td>
</tr>
</tbody>
</table>

3.4.2 232Th系列

図3.5は232Th系列の崩壊系列図である。この系列は自然界に始めから存在する232Thの崩壊から始まり、安定な208Pbになるまで崩壊を繰り返していく系列である。表3.2に232Th系列の核種によるピークのうち、今回解析に使用したものを示す。解析に使用するピークは238U系列と同様に選んだ。

<table>
<thead>
<tr>
<th>核種</th>
<th>エネルギー (keV)</th>
<th>分岐比 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>228Ac</td>
<td>338</td>
<td>11.27</td>
</tr>
<tr>
<td></td>
<td>911.2</td>
<td>25.84</td>
</tr>
<tr>
<td></td>
<td>969</td>
<td>15.83</td>
</tr>
<tr>
<td>212Pb</td>
<td>238.6</td>
<td>43.34</td>
</tr>
<tr>
<td>212Bi</td>
<td>727.3</td>
<td>6.59</td>
</tr>
<tr>
<td>208Tl</td>
<td>583</td>
<td>30.39</td>
</tr>
<tr>
<td></td>
<td>861</td>
<td>4.46</td>
</tr>
<tr>
<td></td>
<td>2614</td>
<td>35.58</td>
</tr>
</tbody>
</table>

3.4.3 60Co

図3.6は60Coの崩壊図である。崩壊図にはその核種の半減期、放出されるガンマ線のエネルギーとその分岐比、崩壊先の核種などが書かれている。図3.6からCoの半減期は約5年であり、ほぼ100％の割合で1173keVと1332keVのガンマ線を出して崩壊し60Niとなることがわかる。ここではこの2つのピークを解析に使用して60Coの量を求めた。
図 3.4: 238U 系列の壊変系列図 [12]
図 3.5: 232Th 系列の壊変系列図 [12]
3.4.4 40K

図 3.7 は 40K の崩壊図である。図 3.7 から 40K の半減期は約 13 億年であり、ベータ崩壊と電子捕獲 (EC) の二種類の崩壊をすることがわかる。40K の 89.3 % はベータ崩壊をするがそのときガンマ線は発生せず、残りの 10.7 % が EC によって 1460keV のガンマ線を放出する。ここではこの 1460keV のピークのみを解析に使用して 40K の量を求めた。

図 3.7: 40K の崩壊図 [11]

3.5 データ解析方法

ここでは HPGe 検出器によって測定したデータからそれぞれの核種の放射能 (Bq) を求める方法を述べる。

3.5.1 ガンマ線検出数の算出

測定データは、既に述べた通り bin 幅 0.4keV、bin 数 8192 のヒストグラムの形で得られる。図 3.8 は実際にサンプルを測定し得られたスペクトラムである。赤線が測定したサンプルのスペクトル、青線
がサンプル無しで測定した検出器の BG スペクトルを示しており、縦軸が単位時間当たりのカウント数 [counts/sec/0.4keV] 横軸がエネルギー [keV] である。

また次の図 3.9 は図 3.8 の 1173keV にある GmCo のピーク周辺の拡大図であり、上がサンプル、下が BG のピークである。各ピークのサンプル由来の単位時間当たりのカウント数を求めるためにはサンプル測定時の単位時間当たりのカウント数 R_{sample} と BG 由来の単位時間当たりのカウント数 (R_{BG}) を引く必要がある。ここでこの計算について説明する。

測定されたカウント数には求めたい光電ピークのカウント数の他に、それより高いエネルギーを持つガンマ線由来のコンプトン散乱による連続成分が含まれる。この連続成分を取り除くため、次の処理を行った。まずピークの中心からあるエネルギー幅の範囲内をピーク領域とし、その外側さらに数 keV 程度の領域を連続成分領域とした。これらの領域の幅はピークのエネルギーと形を見て各ピークごとに設定した。この領域の幅をそれぞれ dE_{peak}, $dE_{continuous}$ とすると (図 3.9)。次に左右の連続成分領域のカウント数を $N_{continuous}$ とし、これらの和を $N_{continuous}$ とし、これを求める。連続成分がピーク前後で一定であると仮定するとピーク領域のカウント数 N_{peak} にも $N_{continuous} \times (dE_{peak}/(dE_{continuous} + dE_{continuous}))$ だけ連続成分由来のカウントが含まれていることになる。よってこの差をとることで光電ピーク由来のガンマ線のカウント数を求めることができ、それをサンプル測定時間 (Livetime とする) で割ることによって光電ピーク由来の単位時間当たりのカウント数を求めることができる。

$$R_{sample} = \frac{N_{peak} - N_{continuous} \times dE_{peak}}{dE_{continuous} + dE_{continuous} \times Livetime} \tag{3.5.1}$$

ここで右辺の単位は分母が [counts] 分子が [sec] である。

同様に、BG 測定の測定時間は BGLivetime、等とすると BG 由来のピークの単位時間当たりのカウント数は次式 3.5.2 のように求められる。

$$R_{BG} = \frac{N_{BGpeak} - N_{BGcontinuous} \times dE_{peak}}{dE_{continuous} + dE_{continuous} \times BGLivetime} \tag{3.5.2}$$

サンプルの単位時間当たりのカウント数から BG の単位時間当たりのカウント数を引くことによって、各ピークのサンプル由来の単位時間当たりのカウント数 (Counts) を求めることができる。

$$Counts = R_{sample} - R_{BG} \tag{3.5.3}$$

この値をそれぞれの核種の放射能の計算に使った。

3.5.2 ガンマ線検出効率の計算

サンプルから出たガンマ線はそのすべてが検出器で検出されるわけではない。またその検出される割合はガンマ線のエネルギーによっても異なる。ここではこの割合を検出効率 (efficiency) と呼び、次式 3.5.4 のように定義する。

$$efficiency = \frac{Ge 結晶内で全エネルギーを落としたガンマ線の数}{サンプルから生じたガンマ線の総数} \tag{3.5.4}$$

この検出効率は Geant4 によるモンテカルロ・シミュレーションによって計算した。Geant4 については次章で触れる。図 3.10 にシミュレーションの様子を示す。緑色の円柱部分が測定サンプルを表しており、その中のランダムな点からランダムな方向に指定したエネルギーのガンマ線が発射される。緑色の直線は発生させたガンマ線の軌跡を示しており、散乱を繰り返す様子が見られる。黄色の円盤はサンプルが置かれるアクリルテーブルである。このシミュレーションではそのガンマ線が物質に相互作用しながら進み、最終的に赤い円柱で描かれた Ge 結晶内で全エネルギーを落とすようなイベントの数を数えていられる。発生させるガンマ線のエネルギーは解析に使うピークのエネルギーと同じものとし、各エネルギー
図 3.8: 測定で得られるスペクトル

のガンマ線をそれぞれ 10^5 イベント発生させた。また、シミュレーションでサンプルの物質を定義するとき、ねじの集合体や複雑な形状の部品などサンプルの形状を再現することができない場合には、サンプルが占めていた空間を円柱などで簡略化し、その空間全体に一様にサンプルの質量分の物質が存在しているものとしてシミュレーションを行った。

シミュレーションの結果得られた検出効率の1例を図 3.11 に示す。これは図 3.10 に示したサンプルのシミュレーション結果をプロットしたものである。

3.5.3 放射能の計算

ガンマ線の検出数と検出効率から、サンプルに含まれる放射性不純物の放射能を求めることができる。ある核種が単一ピークのみのガンマ線を出す場合、その核種の放射能を X(Bq) とするとそれを求める計算式は以下のようになる。

$$X = \frac{Counts}{branch \times efficiency}$$ (3.5.5)

ここで branch はガンマ線を出す崩壊の分岐比である。

^{40}K ように単一ピークのガンマ線のみを出す核種の放射能は式 3.5.5 で計算できるが、^{60}Co のように複数のピークのガンマ線を出す核種や ^{238}U 系列のように複数の核種が水素平衡状態に達しているとき考えられるときは、各ピークからその分岐比と検出効率を考慮して放射能を求める、その結果を統合して値を計算する必要がある。そのためにはあるピークから求められた放射能を x_i(Bq)、その誤差を σ_i として次の式を使った。

$$X = \frac{\sum x_i/\sigma_i^2}{\sum 1/\sigma_i^2}$$ (3.5.6)

$$\sigma^2 = \frac{1}{\sum 1/\sigma_i^2}$$ (3.5.7)

X が求める放射能 (Bq)、σ がその誤差である。
図3.9: 60Coによる1173keVピークを拡大した図

N_{peak}

$N_{continuous}$

光電ピーク由来のカウント

連続成分由来のカウント

dE_{peak}

$dE_{continuous}$

Sample

BG
図 3.10: Geant4 によるシミュレーション。緑色の円柱がねじの集合体を表している。

図 3.11: シミュレーションによって得られた、ガンマ線の検出効率
縦軸が検出効率、横軸がエネルギー (keV) である
3.6 キャリプレーション

HPGe検出器を運用するにあたって、正確なエネルギーのデータを得るためには既知の線源によるキャリプレーションが必要である。本研究で用いた3台のHPGe検出器は57Co、60Co、137Csの3種類の線源を用いて定期的にキャリプレーションを行っている。またこれによってエネルギーのキャリプレーションを行うと同時に、モンテカルロ・シミュレーションで計算しているガンマ線検出効率が正しく見積もられているのかを確認し、検出器の構造がシミュレーション内で正しく再現されているかを確かめられている。表3.3に放射源が既知である線源を測定し、モンテカルロ・シミュレーションによって求めた検出効率を使って計算した放射能と比較した結果を記す。

表3.3 線源の放射能とモンテカルロシミュレーション（MC）による検出効率を使った放射能の比較

<table>
<thead>
<tr>
<th>線源</th>
<th>線源の放射能 (理論値)</th>
<th>energy</th>
<th>MCを用いた測定結果</th>
<th>ずれ</th>
</tr>
</thead>
<tbody>
<tr>
<td>57Co</td>
<td>0.2395 Bq</td>
<td>122.1 keV</td>
<td>0.2696±0.0185 Bq</td>
<td>12.6 %</td>
</tr>
<tr>
<td>57Co</td>
<td>0.2395 Bq</td>
<td>136.5 keV</td>
<td>0.2634±0.0517 Bq</td>
<td>10.0 %</td>
</tr>
<tr>
<td>60Co</td>
<td>3458 Bq</td>
<td>1173.2 keV</td>
<td>3400±52 Bq</td>
<td>-1.7 %</td>
</tr>
<tr>
<td>60Co</td>
<td>3458 Bq</td>
<td>1332.5 keV</td>
<td>3215±50 Bq</td>
<td>-7.0 %</td>
</tr>
<tr>
<td>137Cs</td>
<td>14249 Bq</td>
<td>136.5 keV</td>
<td>14907±143 Bq</td>
<td>6.2 %</td>
</tr>
</tbody>
</table>

3.7 放射性不純物のスクリーニング

本測定の目的の一つとして、放射性不純物のスクリーニングがある。改造後のXMASS検出器でBG線源として残るものの1つにPMT由来のガンマ線がある。本測定ではその放射能の値[18]の1%を基準値として設定し、改造時に新たに導入する各部品の放射能がそれ以下になるように部品選びを行った。表3.4に基準値とした値を示す。含まれている放射性不純物の種類によって検出器に与える影響は異なり、それはMCシミュレーションによる先行研究でわかっている[16]。例えば238U系列や232Th系列の核種は系列崩壊を伴うため、一度だけ崩壊する60Coや40Kと比較すると影響が大きい。そのためここでは測定した部品の放射性不純物量をXMASS検出器に導入する量あたりの放射能の値に直し、それそれぞれの核種ごとに表3.4の値と比較した。また、それらの金属部品はその生産ロットごとに放射性不純物の量が大きく変わることがあるとわかっていたため、使用する螺柱のねじ等はあらかじめ使用量を用意しておく、その一部を測定した。

表3.4 今回設定したスクリーニングの基準値

<table>
<thead>
<tr>
<th>238U系列（中流）</th>
<th>232Th系列</th>
<th>60Co</th>
<th>40K</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5±1.8 mBq</td>
<td>9.6±2.0 mBq</td>
<td>19±1.0 mBq</td>
<td>5.8±1.4 mBq</td>
</tr>
</tbody>
</table>
3.8 測定結果

以下に本測定の測定結果を載せる。本論文では測定したサンプルを、その部品の導入される位置によって3つのサンプル群に分けた。これらは、同じ放射能を持つ部品でもその位置によって検出器に与える影響は大きく異なるためである。検出器に与える影響が大きいサンプル群から順に結果を記す。

本節には実際に検出器に使用した部品の最終的な測定結果のみを記載する。ここに記載されている結果は全て XMASS 検出器での使用量で規格化した値であり、単位は mBq である。

3.8.1 PMT 光電面付近の部品

このサンプル群は PMT 光電面付近に新たに導入される部品である。これらの部品から出る放射線は他の部品による遮蔽の効果を受けないため、他のサンプル群よりも XMASS 検出器の BG に大きな影響を与える。特に容易に遮蔽できるため他のサンプル群では問題にならない α 線も、ここでは液体 Xe 中で発光するので注意が必要である。

表 3.5: PMT 光電面付近に導入される部品の測定結果 (mBq/detector)

<table>
<thead>
<tr>
<th>サンプル</th>
<th>238U 系列上流</th>
<th>238U 系列中流</th>
<th>238U 系列下流</th>
<th>232Th 系列</th>
<th>60Co</th>
<th>40K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu plate</td>
<td>14.8±48.9</td>
<td>-1.07±1.58</td>
<td>-405±506</td>
<td>1.03±1.36</td>
<td>-0.40±0.42</td>
<td>13.9±14.6</td>
</tr>
<tr>
<td>Cu ring</td>
<td>-1940±2390</td>
<td>210±86</td>
<td>24000±68300</td>
<td>40.4±76.3</td>
<td>-17.8±29.1</td>
<td>928±974</td>
</tr>
<tr>
<td>m1 screw (Cu)</td>
<td>8.1±5.5</td>
<td>0.31±0.19</td>
<td>3.4±32.6</td>
<td>-0.07±0.15</td>
<td>-0.07±0.06</td>
<td>0.55±2.11</td>
</tr>
<tr>
<td>m1 screw (sus)</td>
<td>9.1±17.7</td>
<td>1.7±0.6</td>
<td>210±150</td>
<td>-1.07±0.61</td>
<td>0.31±0.25</td>
<td>-1.89±7.14</td>
</tr>
<tr>
<td>合計</td>
<td>-1910±2390</td>
<td>211±86</td>
<td>23800±68300</td>
<td>40.3±76.3</td>
<td>-18±29.1</td>
<td>941±974</td>
</tr>
<tr>
<td>Cu ring以外の合計</td>
<td>32.0±72.1</td>
<td>0.94±1.70</td>
<td>456±529</td>
<td>-0.11±1.50</td>
<td>-0.16±0.49</td>
<td>12.6±16.4</td>
</tr>
<tr>
<td>スクリーニング基準値</td>
<td>-</td>
<td>4.5±1.8</td>
<td>-</td>
<td>9.6±2.0</td>
<td>19±1.0</td>
<td>5.8±1.4</td>
</tr>
</tbody>
</table>

ここで Cu ring の結果に注目すると、238U 系列中流の値のみが有意に大きく出ている。そこでこの測定結果について詳しく見てみると、238U 系列中流の中でも 214Pb と 214Bi のピークのみが有意に大きな値を示しており、226Ra は 6.7±8.3Bq/detector で誤差は大きいものの誤差範囲でゼロという値であった。これは放射平衡が崩れていることを示しており、変更図表 3.4 で 226Ra から 214Pb の間の核種が混入していることになる。このためこのデータは Ge 検出器内に何らかの理由で 222Rn が混入し、それが崩壊することによって 222Rn から下流の核種のみが見えていた可能性がある。この 222Rn がサンプルに付着しているのか検出器内の空洞等に含まれていたのかは今回の測定データのみでは判断できなかったため、このサンプルに関しては使用部品と同様に製造・保管されていた予備部品の再測定を予定している。

この再測定予定のサンプルを除いた計測値を PMT642 本分の放射能と比較すると 238U 系列中流：0.2％，232Th 系列：0％，60Co：0％，40K：0.4％となり、十分小さい数値ということができる。

また、PMT ring および thin plate に関しては XMASS 検出器での使用量が多く、Ge 検出器に入ることはできるサンプル量を大きく上回るため感度の悪い結果となっている。そのため参考としてこれらの部品の材料とした銅の質量成分分析によってわかった放射性不純物量の上限値を表 3.6 に示しておく。ただし、この測定結果からは部品の加工によって付着する放射性不純物の影響はわからない。

表 3.6: 質量成分分析による銅部品の放射性不純物量 (上限値, mBq/detector)

<table>
<thead>
<tr>
<th>サンプル</th>
<th>238U</th>
<th>232Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu plate</td>
<td>1.25</td>
<td>0.407</td>
</tr>
<tr>
<td>Cu ring</td>
<td>13.2</td>
<td>4.30</td>
</tr>
</tbody>
</table>
3.8.2 PMT ホルダー付近の部品

このサンプル群は PMT ホルダー付近の部品である。このサンプル群から出る α 線や β 線は PMT ホルダー等の部品に阻まれて測定領域に届かないため、主に BG 源となるのは γ 線である。これらのサンプルは改造前の検出器でも使われていた部品を、より放射性不純物の少ないものを置いて取り替えるために測定されたものである。ここで A,B,C などで分けているものは長さの違う部品である。

表 3.7: PMT ホルダー付近に導入される部品の測定結果 (mBq/detector)

<table>
<thead>
<tr>
<th>サンプル</th>
<th>238U 系列上流</th>
<th>238U 系列中流</th>
<th>238U 系列下流</th>
<th>232Th 系列</th>
<th>60Co</th>
<th>40K</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボルダー連結具</td>
<td>-700±2000</td>
<td>-8.9±35.5</td>
<td>-9.4×10³±8.4×10³</td>
<td>11.6±36.7</td>
<td>-11.6±11.2</td>
<td>-388±352</td>
</tr>
<tr>
<td>ボルダースペーサー</td>
<td>-607±518</td>
<td>16±9.7</td>
<td>35.0±13.40</td>
<td>6.4±10.0</td>
<td>0.8±3.34</td>
<td>-35±115</td>
</tr>
<tr>
<td>M2 screw</td>
<td>3.47±9.07</td>
<td>0.71±0.31</td>
<td>-5.4±96.7</td>
<td>0.1±0.3</td>
<td>-0.02±0.12</td>
<td>1.04±3.22</td>
</tr>
<tr>
<td>M3 screw A</td>
<td>30±108</td>
<td>45.0±4.9</td>
<td>420±257</td>
<td>-0.62±3.17</td>
<td>6.53±1.47</td>
<td>-10.0±34.8</td>
</tr>
<tr>
<td>M3 screw B</td>
<td>6.7±21.5</td>
<td>1.92±0.61</td>
<td>-18.1±76.6</td>
<td>1.42±0.64</td>
<td>0.78±0.27</td>
<td>9.41±6.65</td>
</tr>
<tr>
<td>M3 washer</td>
<td>6.8±8.2</td>
<td>0.81±0.23</td>
<td>-65±323</td>
<td>0.49±0.26</td>
<td>0.30±0.10</td>
<td>-0.8±2.4</td>
</tr>
<tr>
<td>M6 screw</td>
<td>-7±132</td>
<td>12.0±4.6</td>
<td>750±1180</td>
<td>-0.92±3.65</td>
<td>41.2±2.4</td>
<td>20.2±38.1</td>
</tr>
<tr>
<td>M8 screw A</td>
<td>-130±222</td>
<td>-0.41±3.74</td>
<td>-1400±4460</td>
<td>4.32±3.81</td>
<td>24.5±1.9</td>
<td>-48.6±36.0</td>
</tr>
<tr>
<td>M8 screw B</td>
<td>20±105</td>
<td>3.73±2.93</td>
<td>-690±1330</td>
<td>0.84±3.22</td>
<td>19.0±1.5</td>
<td>6.4±28.3</td>
</tr>
<tr>
<td>M8 screw C</td>
<td>59±240</td>
<td>3.22±5.72</td>
<td>3100±6100</td>
<td>3.54±4.51</td>
<td>12.9±3.1</td>
<td>36.9±43.2</td>
</tr>
<tr>
<td>PMT band 3holes</td>
<td>-40.2±53.6</td>
<td>5.58±2.22</td>
<td>250±1020</td>
<td>-0.72±2.56</td>
<td>7.99±1.17</td>
<td>1.0±29.6</td>
</tr>
<tr>
<td>PMT band 4holes</td>
<td>-43.7±45.9</td>
<td>0.82±2.09</td>
<td>421±968</td>
<td>0.38±2.01</td>
<td>4.79±0.97</td>
<td>-12.6±23</td>
</tr>
<tr>
<td>合計</td>
<td>-1500±2100</td>
<td>80±38</td>
<td>-6300±85500</td>
<td>27±39</td>
<td>107±13</td>
<td>-420±380</td>
</tr>
</tbody>
</table>

サンプル群の合計値で見ると、238U 系列中流と 60Co で大きな有限値が出てくることがわかる。このサンプル群は sus 製の部品が多く、これは無酸素銅製の部品と比べ放射性不純物が少ないものを探すのが困難であった。いくつかのサンプルではスクリーニングの基準値を大きく超えているが、これが限られた時間で可能な限り放射性不純物量の少ない部品を探した結果である。PMT642 本分の放射能と比べると 238U 系列中流は 18%、232Th 系列は 3%、60Co は 6%、40K は 0%であった。
3.8.3 IVC外側の部品

このサンプル群は検出器外側の水タンク内に導入される部品である。これらは今回の検出器改造で新たに導入する外部キャリプレーションシステムの部品である（これについては同期の岡直哉君の修士論文を参照）。これらのサンプルの位置と内部検出器中心部の液体Xe領域は距離も離れており間に遮蔽物が多くありため、高エネルギーのγ線のみがBGに影響する。

表3.8: IVC外側に導入される部品の測定結果 (mBq/detector)

<table>
<thead>
<tr>
<th>サンプル</th>
<th>238U系列上流</th>
<th>238U系列中流</th>
<th>238U系列下流</th>
<th>232Th系列</th>
<th>60Co</th>
<th>40K</th>
</tr>
</thead>
<tbody>
<tr>
<td>中性子遮止用パイプ</td>
<td>13.0±187</td>
<td>3.8±4.14</td>
<td>-3780±3320</td>
<td>7.6±3.44</td>
<td>14.2±1.9</td>
<td>32.9±34.3</td>
</tr>
<tr>
<td>swagelok cap</td>
<td>-13.2±27.6</td>
<td>13.1±1.1</td>
<td>342±487</td>
<td>1.77±0.65</td>
<td>0.51±0.27</td>
<td>3.42±6.30</td>
</tr>
<tr>
<td>sus band</td>
<td>-48±30.0</td>
<td>18.1±1.9</td>
<td>66±124</td>
<td>-0.13±1.14</td>
<td>1.48±0.56</td>
<td>12.6±14.4</td>
</tr>
<tr>
<td>rubber sheet</td>
<td>2.06±3.93</td>
<td>15.8±0.7</td>
<td>408±11</td>
<td>2.96±0.36</td>
<td>0.20±0.13</td>
<td>67.1±5.6</td>
</tr>
<tr>
<td>equator jig</td>
<td>-12.2±40.3</td>
<td>-2.83±2.14</td>
<td>-1800±960</td>
<td>1.92±1.95</td>
<td>3.97±1.26</td>
<td>10.5±22.6</td>
</tr>
<tr>
<td>THT tube</td>
<td>-373±253</td>
<td>163±27</td>
<td>-1970±1530</td>
<td>26.1±18.7</td>
<td>-6.22±7.57</td>
<td>-75±223</td>
</tr>
<tr>
<td>black tube</td>
<td>-118±109</td>
<td>600±21</td>
<td>1140±170</td>
<td>24.8±10.4</td>
<td>3.20±3.87</td>
<td>-21±119</td>
</tr>
<tr>
<td>cable tie</td>
<td>12.0±15.7</td>
<td>4.58±1.47</td>
<td>-230±142</td>
<td>1.68±0.97</td>
<td>-0.38±0.16</td>
<td>19.1±12.3</td>
</tr>
<tr>
<td>合計</td>
<td>-431±338</td>
<td>816±34</td>
<td>-5820±3990</td>
<td>667±21.8</td>
<td>16.9±9.0</td>
<td>50±257</td>
</tr>
</tbody>
</table>

このサンプル群は内部検出器の外側の水タンクに導入されるものであり、PMTとは液体Xe領域までの距離や間の遮蔽物の量が大きく異なるため単純に放射能の値を比べても意味はない。これらのサンプル群からのγ線の影響は他の研究者が行ったMCシミュレーションによって求められ、PMT由来のγ線の影響の0.5％程度であることがわかかる。このためこれらのサンプル群が作るBGは他のBGと比べて問題にならないと言える。

3.9 結論

本章ではXMASS800kg検出器の改造に際して検出器に導入される部品のHPGe検出器による放射能測定について述べた。ここでは検出器に導入される位置によって部品を大きく3つにわけ、その結果を記した。これは導入される位置によって検出器に与える影響が大きく異なるためである。

まず検出器中心部に導入される部品として4種類のサンプルを測定した結果が表3.5である。このうちCu Ringはラドンの混入が疑われる測定結果であり、再測定が予定されているが、これを除いた部品に含まれる放射性不純物量の合計はPMT642本分の放射能と比較して238U系列中流：0.2％、232Th系列：0％、60Co：0％、40K：0.4％と十分小さい値であった。

次にPMTホルダー付近に導入される部品として12種類のサンプルを測定した結果が表3.7である。これらの部品にふくまれる放射性不純物量の合計はPMT642本分の放射能と比較して238U系列中流：18％、232Th系列：3％、60Co：5％、40K：0％であった。これらの部品の中にはスクリーニング基準値をしていたPMT642本分の放射能の1％の値を超えた量の放射性不純物を含むものも含まれていたが、これは限られた時間内で可能な限り放射性不純物量の少ない部品選びをした結果である。核種ごとに値を比較したときPMTと比較して最も割合が大きかったものは238U系列中流の18%という値であるため、これらの部品に含まれる放射性不純物は少なくともPMTに含まれる放射性不純物の18％以下であると言える。

最後に外部検出器水タンク内に導入される部品として7種類のサンプルを測定した結果が表3.8である。これらの部品はPMTホルダーと比較して液体Xe領域との距離が離れているため単純にPMTに含まれる放射性不純物量との比較はできないが、この量の放射性不純物が検出器BGに与える影響はPMT由来の放射線が検出器BGに与える影響の0.5％以下であることがわかかる。
このように、今回導入した部品に含まれる放射性不純物が検出器 BG に与える影響は、検出器改造後に BG として残ると考えられている PMT に含まれる放射性不純物による影響の 18％以下であることがわかった。
第4章 モンテカルロ・シミュレーションによる放射性不純物の影響の計算

前章では今回の検出器改造によって新たに導入された部品に含まれる放射性不純物の量を見積もった。ここではその放射性不純物が検出器のBG事象としてどのように観測されることになるのかを、モンテカルロ・シミュレーション（以下MC）によって計算した。

4.1 モンテカルロ・シミュレーション

モンテカルロ・シミュレーションとは、乱数を用いて確率的に起こる事象のシミュレーションを行う手法である。XMASS実験では大規模シミュレーションソフトウェアであるGeant4を用いてMCシミュレーションを行っている。Geant4は高エネルギー物理学、宇宙線、原子核物理学といった分野で用いられており、素粒子が物質中で起こす複雑な事象をシミュレーションすることができる。XMASS実験では実際の検出器と同じ材料・形状の検出器をシミュレーション上の仮想空間に組み立て、その中の様々な位置で放射性核種を崩壊させ、そこから出る放射線がXe中でどのように発光するかのようにPMTで観測されるかなどをシミュレーションしている。これによって部品に含まれる放射性不純物の核種の種類とその量がわかっていれば、その位置でその核種の崩壊をシミュレーションすることによって、その放射性不純物が検出器にどのようなBGスペクトルを作るかを見積もることができる。

4.1.1 検出器の形状

シミュレーション内でのXMASS800kg検出器の形状は実際の検出器を再現している。特に低エネルギー領域のBGの理解で重要になるような細かい（Cu PlateとCu Ringの間やCu RingとPMTの間にある隙間など）を再現することにより、正確なシミュレーションを行うことが可能となっている。

図4.1にGeant4中で再現されているXMASS800kg検出器の形状を示す。数多く見える小さな円がPMTの背面であり、その周りの構造体がPMTホルダーである。PMTホルダーは実際の検出器と同じ、三角形を60枚組み合わせた球体に近い形状をしている。

図4.2にGeant4中で再現されているPMT光電面付近の構造を示す。今回の改造で新たに導入したCu PlateとCu Ringが図のように再現されている。
図 4.1: Geant4 中で再現されている XMASS800kg 検出器の形状

図 4.2: Geant4 中で再現されている PMT 付近の構造
4.1.2 パラメータチューニング

MC シミュレーションでは液体 Xe の散乱長や金属の反射率などの物理的な値を、より現実を反映させるような値を使うように調整する必要がある。これをパラメータチューニングと呼ぶ。パラメータチューニングでは検出器に線源を入れて行うキャリブレーションのデータと、それをシミュレーションして得られた結果とを比較し、各パラメータの値を変化させながらシミュレーションの結果が最もよく現実に得られたデータを再現する値をベストパラメータとして選ぶ。これまでの研究により、様々なパラメータのベストパラメータの値がわかっている。表 4.1 に様々なパラメータのチューニングされた値を記す。本論文ではこれらの値を採用して MC シミュレーションを行っている。

表 4.1: パラメータチューニングによって得られたベストパラメータ

<table>
<thead>
<tr>
<th>パラメータ</th>
<th>得られたベストパラメータ</th>
</tr>
</thead>
<tbody>
<tr>
<td>液体 Xe の散乱長</td>
<td>63cm</td>
</tr>
<tr>
<td>液体 Xe の吸収長</td>
<td>900cm</td>
</tr>
<tr>
<td>検出器表面の銅の反射率</td>
<td>50 %</td>
</tr>
<tr>
<td>検出器表面のアルミの反射率</td>
<td>90 %</td>
</tr>
</tbody>
</table>

4.2 再現した放射性核種

本論文では前章の結果から判断し、検出器に BG として与える影響が大きいと考えられる
- Cu Plate に含まれる ^{238}U 系列上流
- Cu Plate に含まれる ^{232}Th 系列
- Cu Ring に含まれる ^{238}U 系列中流
の 3 種類の放射性核種について、その崩壊と Xe 中での発光をシミュレーションし、検出器に作る BG を求めた。

4.2.1 Cu Plate

前章で Cu Plate に含まれる放射性不純物量の Ge 検出器による測定結果と質量分析による結果を示した。ここではより厳しい制限の与えられている質量分析の結果得られた量の ^{238}U および ^{232}Th が Cu Plate の検出器内部表面（図 4.3 に示す位置）のみに集中しているという極端な場合を想定してシミュレーションを行った。これは核種の α 崩壊による α 線及び原子核反跳の影響が最も大きく出る状況である。しかし実際には核種は完全に液体 Xe に面した部分ではなくいくらか金属中にめり込んでおり、また銅表面がシミュレーションで再現されるように完全に平面ではないことなどの影響により、このシミュレーション結果は現実を完全に反映できては言えないと考えられる。これについては後に考察する。これらの核種の量は前章で述べた質量分析による結果得られた上限値の値を使い、表 4.2 とした。

表 4.2: シミュレーションで想定した Cu Plate 表面に存在する核種の量

<table>
<thead>
<tr>
<th>核種</th>
<th>含有量</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{238}U 系列上流</td>
<td>1.25 mBq</td>
</tr>
<tr>
<td>^{232}Th 系列</td>
<td>0.407 mBq</td>
</tr>
</tbody>
</table>
4.2.2 Cu Ring

前章で議論したように、Cu Ring の Ge 検出器による測定結果の 238U 系列中流の値には疑問が残るため、この部品に関しては現在再測定を予定している。HPGe 検出器による測定結果からは 238U 系列中流の値が大きく見えていた。これはサンプル表面（または袋などサンプル以外）にラドンが付着した結果だと考えられるが、今回のシミュレーションでは 238U 系列中流の全ての核種が系列崩壊しているとしてシミュレーションを行った。ここでは HPGe 検出器による測定値を仮定し、その量の 230Th (238U 系列中流の最初の核種) が Cu Plate のときと同様に Cu Ring の検出器内側表面（図 4.4 に示す位置）のみに集中して存在しているという極端な場合を想定し、210Pb となるところまでシミュレーションを行った。核種の量は前章で述べた HPGe 検出器による測定結果から、表 4.3 とした。

表 4.3: シミュレーションで想定した Cu Ring 表面に存在する核種の量

<table>
<thead>
<tr>
<th>238U 系列中流</th>
<th>210 mBq</th>
</tr>
</thead>
</table>

図 4.3: シミュレーションで仮定した Cu Plate 表面に存在する放射性核種の位置

図 4.4: シミュレーションで仮定した Cu Ring 表面に存在する放射性核種の位置

4.3 エネルギースケールの決定

MC シミュレーションの結果、XMASS 検出器全体の各 PMT で生成した光電子 (photo electron; pe) の数として得られる。しかし実際に知りたいのは各イベントのエネルギーであるため、pe 数からエネルギーに変換する必要がある。この変換のためのスケーリングファクターを求めるため、発光のエネルギースペクトルが既知である線源として 57Co を検出器中心に置いた場合のシミュレーションを行った。図 4.5 に 57Co の崩壊図を示す。この図からわかるように 57Co からは 85.6 %の分岐比で 122keV の γ 線が生じる。ここではこのピーク位置の pe 数を 122keV と設定することによってスケーリングファクターを求める。

図 4.6 に 57Co を検出器中心で 104 回崩壊させたときの結果を示す。青線で描かれたヒストグラムが MC シミュレーションの結果であり、赤の曲線は主要なピークをガウス関数でフィッティングしたものである。また横軸は XMASS 検出器の全 PMT で検出された pe の数である。最も大きいピークが分岐比 85.6 %の 122keV ピークであり、その右に小さく見えるのが分岐比 10.68 %の 136keV ピークである。また 800pe の辺りに見えるピークはタングステンからの X 線である。これはの 57Co のシミュレーションをする際に、XMASS のキャリブレーションで実際に使った線源をそのまま置いた状態のシミュレーションを行ったため、その線源を固定するホルダーに含まれるタングステンの影響まで見ていることによるものである。フィッティングの結果 122keV のピークの中心は 1668.2pe の位置にあったため、pe から
図 4.5: 57Co の崩壊図 [11]

エネルギー [keV] に直すためのスケーリングファクターは 1668.2pe / 122keV = 13.7 pe/keV と求めることができた。

図 4.6: スケーリングファクターの計算
検出器中心に 57Co を置いたシミュレーション結果から pe→keV 変換のスケーリングファクターを計算した
4.4 シミュレーション結果

4.4.1 Cu Plate

238U 系列上流

図 4.7 および図 4.8 は 238U 系列上流の核種をプレート表面に置いたときの BG スペクトルのシミュレーション結果である。図中の赤色部分がα線由来、緑色部分が電子由来、黄色部分がγ線由来、青色部分が原子核反跳による発光のエネルギーを示しており、灰色部分はこれらの方々が主成分以上の発光が同時に観測されたイベントのエネルギーを示している。横軸は前節で述べたようにスケーリングしたエネルギー [keV]、縦軸は検出器標的 1kg あたり一定時間 1 日あたり・エネルギー幅 1keV あたりのカウント数であり、図 4.8 は図 4.7 の低エネルギー領域を拡大したものである。エネルギー領域は図 4.7 が 0-6000keV、図 4.8 が 0-100keV となっている。どちらもその範囲を 100bin に分割したヒストグラムとして描かれている。図 4.7 の最も低いエネルギーの部分で図 4.8 と値が異なって見えるのはこの bin 幅の違いによるものである。実際、図 4.8 の 0-60keV の値を平均すると図 4.7 の 1bin 目の値と等しくなることがわかる。また、シミュレーションの統計数としては表 4.2 に記した量の核種が 10 週間で崩壊する分の統計を摂取した後、縦軸の単位となるように規格化した。

図 4.7 と図 4.8 より、Cu Plate 表面の 238U 系列上流の核種が作る BG は、高エネルギー領域ではα線によるものが、低エネルギー領域ではγ線と原子核反跳によるものが主であることがわかる。これらについての理解を深めるため、同じ量の同じ核種が検出器の中心に存在したと仮定した場合のシミュレーションも行った。この結果を図 4.9 に記す。

まずはα由来のイベント（赤色）について考察する。図 4.7 に注目すると、3200keV 付近と 3500keV 付近にピクが見える。検出器中心に核種を置いた場合にこれがどうなっているかを見るために 4800keV 付近と 5400keV 付近に 2 本のピークが見えるが、純粋なα線による発光ではなく混合のイベントとして見えてきている。これは、検出器中心にある核種がα崩壊をする際にはα線による発光と原子核反跳による発光が同時に起こるためである。このエネルギーは実際のα線のエネルギー（図 4.4 を参照）よりやや高い位置にピークが見えているが、高エネルギー領域でエネルギーが正確に現われないのは Xe シンチレータの特性としてわかったものである。またこのエネルギーは plate 表面の結果（図 4.7）と比較すると、表面ではα線由来のピークのエネルギーや低く見えていることがわかるが、これは次のように解釈できる。まず、α線は Xe 中ですぐにエネルギーを落として発光するため、plate 表面から発生したα線の発光は plate のすぐ近くで起こる。plate のすぐ近くで発光したとき、全方位にわたって放出される光のうち、半分は plate 側から出、反射される。このときシミュレーションでは平面表面の反射率を 0.5 としているため、plate 側に出た光のうち半分は吸収され、反射されるのは半分だけである。このため実際に観測できる光量は、実際に発せられた光量の 3/4 程度となっててしまう。このように考えると図 4.7 ではピーク位置がα線のエネルギーよりも低い位置に見えていることの説明がつく。

次に電子由来のイベント（緑色）に注目する。図 4.7 を見ると、電子由来のイベントは 1300keV 付近からゆるやかに立ちあがる連続成分と、200keV 以下で急激に立ち上がる成分の 2 種類があることがわかる。これは前者は 234Pa のβ崩壊で生じる最高エネルギー 2273keV のβ線、後者は 234Th のβ崩壊で生じる最高エネルギー 195keV のβ線によるものである。電子もXe 中を長距離を走ることはできなかったため、α線の場合と同様に図 4.9 と比べるとやや低エネルギー側に偏っている。

次にγ線由来のイベントだが、これは他のイベントと比べるとほとんど見られない。これは 238U 系列上流には高いシグニチャーが存在しないことから説明できる。

最後に原子核反跳だが、plate 表面（図 4.8）を見ると 10keV 付近に鋭いピークが立っているが、検出器中心ではそのようなピークは見られない。これは、検出器中心にある核種がα崩壊をする際にはα線による発光と原子核反跳による発光が同時に起こるためである。一方 plate 表面の核種がα崩壊するときには、α線による発光と原子核反跳による発光のどちらか一方のみが起こる。α崩壊の際には運動量保存則によりα線と原子核が互いに反対方向に運動量をもつため、どちらか片方のものが Xe 内で発光し、他方は plate の内部に吸収されてしまうからである。また、シミュレーション結果ではこれらかかなりはっ
ぎりとしたピークとして見えているが、実際にこのイベントはこれほどはっきりとしたピークとして見えないと考えられる。これはMCシミュレーションと実際の検出器内の部品の表面状態の違いによる。シミュレーション上では銅表面は完全に平坦な平面となっており、その上に核種を置いた状態を仮定してシミュレーションを行っている。しかし実際の検出器内では铜表面は完全な平面とは言えず、μmオーダーの表面の凹凸が存在すると考えられる。この凹凸が反射されることで、生じた光が反射されずに検出器内側に向かう立体角は2πよりも小さくなる。その結果このピークはさらにエネルギーが低い領域に及ぶ連続成分となると考えられる。また実際には表面に付着した核種はいくらか銅の内部にめり込んでいることも考えられる。そのためα崩壊の後も原子核は液体Xeと反応せず、原子核反応による発光はシミュレーション上で再現されている量よりも小さくなることが考えられる。

参考として表4.4に、238U系列上流から出る主な放射線をまとめた。
図 4.8: Cu Plate 表面の 238U 系列上流核種が作る BG スペクトル（低エネルギー領域）

図 4.9: 238U 系列上流核種を検出器中心で崩壊させたときに見えるスペクトル

232Th 系列

図 4.10 および図 4.11 は 232Th 系列の核種をプレート表面に置いたときのシミュレーション結果である。238U 系列上流のときと同じく横軸はエネルギー [keV]、縦軸が count/keV/day/kg となっており、色がその発光のもととなった粒子を表わしている。シミュレーションの統計数も 238U のときと同じく 10 週間に崩壊する個数とした。
表 4.4: 238U 系列上流から出る主な放射線

<table>
<thead>
<tr>
<th>核種</th>
<th>放射線の種類</th>
<th>エネルギー (keV)</th>
<th>分割比</th>
</tr>
</thead>
<tbody>
<tr>
<td>235U</td>
<td>α 線</td>
<td>4153</td>
<td>20.9 %</td>
</tr>
<tr>
<td>238U</td>
<td>α 線</td>
<td>4202</td>
<td>79.0 %</td>
</tr>
<tr>
<td>234Th</td>
<td>β 線</td>
<td>195</td>
<td>78.2 %</td>
</tr>
<tr>
<td>234Pa</td>
<td>β 線</td>
<td>2273</td>
<td>97.8 %</td>
</tr>
<tr>
<td>234U</td>
<td>α 線</td>
<td>4723</td>
<td>28.4 %</td>
</tr>
<tr>
<td>234U</td>
<td>α 線</td>
<td>4775</td>
<td>71.4 %</td>
</tr>
</tbody>
</table>

表 4.5 に 232Th 系列の放射性核種から出る主な放射線を記す。これを見るとこの系列には 6000keV を超える α 線を出す核種がいくつか含まれている。にも関わらず図 4.10 にはそのような信号が見えないのは、その光量のイベントを XMASS 検出器で観測しようとすると DAQ システム上で電荷の飽和が起こってしまい、正確なエネルギーを知ることができないためである。

Cu Plate 上の 232Th 系列の放射性核種が作る BG も基本的には前の 238U 系列上流からの BG と同様に理解できるが、こちらの方が α 崩壊の回数が多く、またより高いエネルギーの α 線を出すため α 線由来・原子核反跳由来の BG のスペクトルがやや複雑な形をしている。しかし検出器内に存在する核種の量が少ないため、BG への寄与としては 238U 系列上流による物の方が大きいこともわかる。

図 4.10: Cu Plate 表面の 232Th 系列核種が作る BG スペクトル
図 4.11: Cu Plate 表面の232Th 系列核種が作る BG スペクトル（低エネルギー領域）

表 4.5: 232Th 系列から出る主な放射線

<table>
<thead>
<tr>
<th>核種</th>
<th>放射線の種類</th>
<th>エネルギー (keV)</th>
<th>分岐比</th>
</tr>
</thead>
<tbody>
<tr>
<td>232Th</td>
<td>α 線</td>
<td>3950</td>
<td>21.7 %</td>
</tr>
<tr>
<td>232Th</td>
<td>α 線</td>
<td>4012</td>
<td>78.2 %</td>
</tr>
<tr>
<td>228Ra</td>
<td>β 線</td>
<td>12.8</td>
<td>30.0 %</td>
</tr>
<tr>
<td>228Ra</td>
<td>β 線</td>
<td>39.2</td>
<td>40.0 %</td>
</tr>
<tr>
<td>228Ac</td>
<td>β 線</td>
<td>1158</td>
<td>32.0 %</td>
</tr>
<tr>
<td>228Ac</td>
<td>γ 線</td>
<td>911</td>
<td>25.8 %</td>
</tr>
<tr>
<td>228Ac</td>
<td>X 線</td>
<td>15.2</td>
<td>35.5 %</td>
</tr>
<tr>
<td>228Th</td>
<td>α 線</td>
<td>5340</td>
<td>27.2 %</td>
</tr>
<tr>
<td>228Th</td>
<td>α 線</td>
<td>5340</td>
<td>72.1 %</td>
</tr>
<tr>
<td>224Ra</td>
<td>α 線</td>
<td>5685</td>
<td>94.9 %</td>
</tr>
<tr>
<td>220Rn</td>
<td>α 線</td>
<td>6288</td>
<td>99.9 %</td>
</tr>
<tr>
<td>216Po</td>
<td>α 線</td>
<td>6778</td>
<td>100 %</td>
</tr>
<tr>
<td>212Pb</td>
<td>β 線</td>
<td>335</td>
<td>82.5 %</td>
</tr>
<tr>
<td>212Pb</td>
<td>γ 線</td>
<td>239</td>
<td>43.3 %</td>
</tr>
<tr>
<td>212Pb</td>
<td>X 線</td>
<td>76.5</td>
<td>28.3 %</td>
</tr>
<tr>
<td>212Bi</td>
<td>α 線</td>
<td>6051</td>
<td>25.1 %</td>
</tr>
<tr>
<td>212Bi</td>
<td>β 線</td>
<td>2248</td>
<td>55.5 %</td>
</tr>
<tr>
<td>212Po</td>
<td>α 線</td>
<td>8785</td>
<td>100 %</td>
</tr>
<tr>
<td>208Tl</td>
<td>β 線</td>
<td>1796</td>
<td>49.0 %</td>
</tr>
<tr>
<td>208Tl</td>
<td>γ 線</td>
<td>583</td>
<td>84.5 %</td>
</tr>
<tr>
<td>208Tl</td>
<td>γ 線</td>
<td>2615</td>
<td>99.2 %</td>
</tr>
</tbody>
</table>
Cu Plate の MC の合計と実データとの比較

図 4.12 に、Cu Plate 上の 238U 系列上流と 232Th 系列の核種が作る BG の合計を、実際に ATM で取得されたデータ及び MC シミュレーションでわっている PMT 由来の放射線が作る BG と比較した図を示す。これまで同様、横軸がエネルギー [keV] であり縦軸が counts/keV/day/kg となっている。水色が実際に検出器を運用し取得されたデータ、マゼンタが MC シミュレーションによる先行研究でわかっていた PMT に含まれる放射性核種が作る BG、そして黒線が本論文で見積もった Cu Plate 表面の放射性核種が作る BG である。この実データは改造後の検出器で取得されたものである。この図によると 10keV 付近では Plate 表面の核種が作る BG が最も大きく PMT が作る BG と同程度の影響となっているが、この位置のピークは原子核反応によるものであり、先に述べた通り実際に検出器に作る BG はこれほど高くはならない。またその他の領域では PMT が作る BG と比較して十分小さい BG を作るに留まっていることがわかる。

![Counts/keV/day/kg vs. Energy [keV]](chart)

図 4.12: Cu Plate 表面の核種が作る BG スペクトルと実データおよび PMT の放射性核種が作る BG スペクトルとの比較

暗黒物質探索に対する影響

図 4.12 を見ると、改造後の検出器において実データ（水色）と PMT 由来 BG（ピンク）の間には 1 枚に近い差が残っている。これは改造後の検出器においても PMT に含まれる放射性不純物が作る BG は重要な BG になってはいないことを示している。この差は主に PMT に使用されたアルミニウムに含まれる放射性不純物由来のβ線・γ線が Cu Plate・Cu Ring を透過して液体 Xe 領域に達して作れる BG だと考えられている。しかし、この BG は事前に行われた MC シミュレーションによる研究では 1/10程度まで低減できると期待されていたため、これだけでは現在の BG のすべては説明できない。また実データでは 10keV 以下のエネルギー領域において BG が立ち上がっているが、この立ち上がりもこれより低いエネルギーで起こると期待されていたものである。XMASS 実験では 10keV 付近のエネルギー領域に暗黒物質からの信号が見えると考えられているため、この部分の BG は問題となる。そのため特にこの部分の BG の理解は XMASS グループにとっての課題となっている。
4.4.2 Cu Ring

図4.13および図4.14は238U系中流核種をCu Ring表面（図4.4）に置いたときのシミュレーション結果である。

図4.13を見ると、plate表面のときとは異なり高エネルギー領域のα線ピークがほとんど見えなくなってしまい、低エネルギー領域に移動していることがわかる。これはα線はCu Plateを通りぬけることができないためCu PlateとCu Ringの間でのみ発光し、その光が僅かにplateの外へ漏れていることを示している。また、3000-4000keV付近にわずかに見受けているα線イベントは、Cu Ringの側面などでplateがringを完全に多光に隠してはいない部分からのものとも考えられる。Cu PlateはCu Ringの側面に少しずつ出す構造をしている（図4.2を参照）が、それでもα線やそれによる発光の光を完全には遮蔽していない。このため低エネルギー領域ではむしろBGレベルが上がる結果となっている。

図4.13: Cu Ring表面の238U系中流核種が作るBG
図 4.14: Cu Ring 表面の ^{238}U 系列中流核種が作る BG（低エネルギー領域）

Cu Ring の MC と実データとの比較

図 4.15 は図 4.12 と同様に、Cu Ring 表面の放射性核種が作る BG を実際に ATM で取得されたデータ及び MC シミュレーションでわかっている PMT 由来の放射線が作る BG と比較した図である。これを見ると低エネルギー領域では明らかにシミュレーションによる BG スペクトルが実データを上回っている。このことからも、HPGe 検出器の測定結果または今回のシミュレーション結果が信頼できないということがわかる。もし HPGe 検出器による測定結果の通りの量の ^{238}U 系列中流核種が Cu Plate 内に存在するのであれば、それが表面のみに存在するという理由はなく、Cu Ring 全体に均一に含まれると仮定することが妥当である。またもし HPGe 検出器による測定で得られた量の核種が Cu Ring 表面への ^{222}Rn の付着によるものであったとして、^{222}Rn 以下の中流の核種は短い半減期（最も長いもので ^{222}Rn の 22.4 日）で崩壊してしまうため、実際に検出内で BG に影響するのは長い半減期を持つ ^{210}Pb 以下の核種のみである。そのためこの場合は ^{238}U 系列下流の核種がリング表面に存在するとして MC シミュレーションを行うべきであった。この部分に関しては HPGe 検出器による再測定の結果を持ち、シミュレーションモデルの妥当性をよく考慮した上で新たにシミュレーションを行ってみる必要がある。
図 4.15: Cu Ring 表面の核種作る BG スペクトルと実データおよび PMT の放射性核種作る BG スペクトルとの比較
第5章 残された問題

本章では第3章及び第4章において残された課題について改めてまとめる。

5.1 HPGe検出器による再測定

HPGe検出器による放射能測定の結果では、Cu Ringは238U系列中流の核種を有するものだった。しかし第3章で述べた通り、この結果は疑問が残るものである。本測定では238U系列の中流に属する核種の崩壊は平衡状態に達していると仮定していたが、測定結果では226Raの放射能が有意な値を示していなかった。これはその下流に位置する222Rnがサンプルまたはその袋に付着していた可能性があることを示している。しかし226Raの値は誤差範囲内でその下流の核種による測定結果と整合性がとれるものであるため、今回の測定からはさっきりしたことはわからない。このためCu Ringに関しては、実際に検出器に導入された部品と同様に作られ、同様に保管されていた予備部品の放射能測定が必要である。この測定はサンプル量が少なかったため、長期間にわたって行うことによって感度を上げる必要がある。

5.2 シミュレーションモデルの考察

Cu Ringに含まれる放射性核種が作るBGのシミュレーション結果は実際に改造後検出器で取得されたデータを大きく上回るものであり(図4.15)、明らかに問題のあるものであった。これは4.4.2節で述べたとおり、シミュレーションのモデルに問題があることを示している。今回のシミュレーションでは238U中流に属す核種全てがCu Ring表面ののみに分布しているという極端な場合をシミュレーションした。しかし実際にはこのような状況は起こることは考えにくい。シミュレーション通り238U中流に属す核種全てがCu Ringに含まれるとするならば表面のみではなくRing全体に一様に分布しているはずであり、また表面のみに放射性不純物が付着しているような状況の場合は気体である222Rnの付着と考えるのが妥当であり、その場合その核種は最も長いものでも3.8日という半減期で崩壊してゆき検出器内部に残りBG源となるのは半減期の長い210Pb以降の核種となるためである。このようにCu Ringに含まれる放射性核種の影響を見積もりためには、その核種の種類を正確に特定することが必要である。そのためCu Ringの作るBGに関しては、前節で述べたCu RingのHPGe検出器による再測定結果を待ち、適当なモデルを考察した上で再度シミュレーションを行う必要がある。
第6章 まとめ

XMASS 実験は高温度での暗黒物質直接探索を目指す実験であり、本年度の秋までにかけてさらなるバックグラウンド (BG) の低減のための検出器の大規模改造を行っていた。本論文ではこの検出器改造の際に新たに検出器に導入される部品を全て HPGe 検出器によってガンマ線量を測定することにより、部品の選別・放射性不純物のスクリーニングを行った。改造前 XMASS 検出器の BG 源はこれまでの研究によりほぼ特定されており、その大部分は今回の大改造で銅製の遮蔽板 (Cu Plate および Cu Ring) を導入することによって除去される見込みである。検出器改造後の BG 源となるものの 1 つとして検出器の PMT に含まれる放射性不純物が作る BG があると考えられているため、本論文ではその PMT に含まれる放射性不純物の 1 % を基準とし、新たに導入する部品がそれ以上の放射性不純物を含むことのないように部品の選別を行った。その結果、一部の部品を除き多くの部品でこの基準值以下の放射性不純物量となるものを見つけることができた。導入した部品全体でみても、（再測定にかける部品は除き）検出器中心部に導入する部品の合計で PMT の 0.4 % 以下、PMT 付近に導入する部品の合計で 18 % 以下まで放射性不純物量を抑えることができた。このように本研究によって、今回の大改造で導入した部品に含まれる放射性不純物は XMASS 検出器にとっては主な BG にはなりえないということがわかった。

また本論文では HPGe 検出器での測定によって見積もられた量の放射性不純物が実際に検出器内に存在したとすると XMASS 検出器にどのような BG を作るのかを、MC シミュレーションによって見積もった。ここでは HPGe 検出器または質量成分分析による測定値の放射性核種が、Cu Plate と Cu Ring それぞれの検出器内側表面にのみ分布しているという極端な場合を仮定してシミュレーションを行った。その結果、最も検出器の内側に導入された放射性物質量が大きいと考えられた Cu Plate からの放射線が作る BG スペクトルも PMT に含まれる放射性不純物が作る BG スペクトルよりも小さいということを示した。また HPGe 検出器による Cu Ring の測定結果を仮定し MC シミュレーションを行った結果を実データと比較したところ、今回仮定したモデルは妥当ではないという結論に至った。これについては HPGe 検出器による再測定の結果を待ち、Cu Ring のどこにどのような核種が存在するのかを突き止めただけで妥当なモデルでのシミュレーションを行い再評価する必要がある。
付録A 検出器内での使用を見送った部品

HPGe検出器での測定の大きな目的の1つとして、検出器内に導入する部品の選別があった。図A.1に示すのはスクリーニングの結果、検出器内で使用するのが適当ではないとして使用を見送った部品のHPGe検出器での測定結果である。

表A.1: 使用を見送った部品の測定結果

<table>
<thead>
<tr>
<th>サンプル</th>
<th>235U系列上流</th>
<th>235U系列中流</th>
<th>235U系列下流</th>
<th>232Th系列</th>
<th>60Co</th>
<th>40K</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3 screw A 候補1</td>
<td>150±75</td>
<td>71.9±3.5</td>
<td>-2320±3480</td>
<td>7.11±1.93</td>
<td>6.72±0.94</td>
<td>23.1±18.7</td>
</tr>
<tr>
<td>M6 screw 候補1</td>
<td>-62.0±37.8</td>
<td>11.0±4.6</td>
<td>-2280±2290</td>
<td>6.60±4.42</td>
<td>22.3±2.3</td>
<td>-62.0±37.8</td>
</tr>
<tr>
<td>M6 screw 候補2</td>
<td>211±200</td>
<td>9.24±4.27</td>
<td>-1690±1900</td>
<td>5.09±4.60</td>
<td>27.0±2.4</td>
<td>45.3±40.8</td>
</tr>
<tr>
<td>M8 screw A 候補1</td>
<td>22±380</td>
<td>5.00±7.33</td>
<td>-280±5650</td>
<td>52.9±8.4</td>
<td>41.6±3.8</td>
<td>-34.7±68.4</td>
</tr>
<tr>
<td>M8 screw A 候補2</td>
<td>-131±320</td>
<td>6.52±6.37</td>
<td>-7340±4500</td>
<td>-2.80±6.34</td>
<td>30.5±3.3</td>
<td>-63.7±58.1</td>
</tr>
<tr>
<td>M8 screw A 候補3</td>
<td>1310±440</td>
<td>35.0±7.4</td>
<td>1530±8870</td>
<td>39.9±7.4</td>
<td>26.3±3.2</td>
<td>5.9±60.9</td>
</tr>
<tr>
<td>スクリーニング基準値</td>
<td>-</td>
<td>4.5±1.8</td>
<td>-</td>
<td>9.6±2.0</td>
<td>19±1.0</td>
<td>5.8±1.4</td>
</tr>
</tbody>
</table>
付録B 測定サンプル情報

以下に示すのは、HPGe検出器によってガンマ線測定を行った部品のサンプル情報である。

表 B.1: サンプル情報1 PMT光電面付近の部品

<table>
<thead>
<tr>
<th>部品名</th>
<th>材料</th>
<th>重量</th>
<th>個数</th>
<th>計測時間</th>
<th>XMASS使用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu Plate</td>
<td>Cu</td>
<td>2120 g</td>
<td>-</td>
<td>4.9 days</td>
<td>2004 g -</td>
</tr>
<tr>
<td>Cu Ring</td>
<td>Cu</td>
<td>990 g</td>
<td>30</td>
<td>1.9 days</td>
<td>- 642</td>
</tr>
<tr>
<td>m1 screw (Cu)</td>
<td>Cu</td>
<td>245 g</td>
<td>21000</td>
<td>2.7 days</td>
<td>- 2120</td>
</tr>
<tr>
<td>m1 screw (sus)</td>
<td>sus</td>
<td>79 g</td>
<td>9000</td>
<td>6.6 days</td>
<td>- 7680</td>
</tr>
</tbody>
</table>

表 B.2: サンプル情報2 PMTホルダー付近の部品

<table>
<thead>
<tr>
<th>部品名</th>
<th>材料</th>
<th>重量</th>
<th>個数</th>
<th>計測時間</th>
<th>XMASS使用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>ホルダー連結金具</td>
<td>Cu</td>
<td>4759 g</td>
<td>3</td>
<td>5.7 days</td>
<td>- 15</td>
</tr>
<tr>
<td>ホルダースペーサー</td>
<td>Cu</td>
<td>2070 g</td>
<td>-</td>
<td>6.3 days</td>
<td>5699 g -</td>
</tr>
<tr>
<td>M2 screw</td>
<td>sus</td>
<td>90 g</td>
<td>600</td>
<td>6.7 days</td>
<td>- 240</td>
</tr>
<tr>
<td>M3 screw A</td>
<td>sus</td>
<td>2012 g</td>
<td>500</td>
<td>11.3 days</td>
<td>- 500</td>
</tr>
<tr>
<td>M3 screw B</td>
<td>sus</td>
<td>646 g</td>
<td>1000</td>
<td>2.8 days</td>
<td>- 377</td>
</tr>
<tr>
<td>M3 washer</td>
<td>sus</td>
<td>315 g</td>
<td>10000</td>
<td>4.6 days</td>
<td>- 2013</td>
</tr>
<tr>
<td>M6 screw</td>
<td>sus</td>
<td>3900 g</td>
<td>320</td>
<td>3.6 days</td>
<td>- 320</td>
</tr>
<tr>
<td>M8 screw A</td>
<td>sus</td>
<td>4810 g</td>
<td>360</td>
<td>6.6 days</td>
<td>- 420</td>
</tr>
<tr>
<td>M8 screw B</td>
<td>sus</td>
<td>3780 g</td>
<td>300</td>
<td>9.4 days</td>
<td>- 240</td>
</tr>
<tr>
<td>M8 screw C</td>
<td>sus</td>
<td>2855 g</td>
<td>-</td>
<td>1.2 days</td>
<td>2855 g -</td>
</tr>
<tr>
<td>PMTband 3holes</td>
<td>sus</td>
<td>1530 g</td>
<td>480</td>
<td>12.8 days</td>
<td>- 420</td>
</tr>
<tr>
<td>PMTband 4holes</td>
<td>sus</td>
<td>810 g</td>
<td>254</td>
<td>10.4 days</td>
<td>- 222</td>
</tr>
</tbody>
</table>

表 B.3: サンプル情報3 水タンク内の部品

<table>
<thead>
<tr>
<th>部品名</th>
<th>材料</th>
<th>重量</th>
<th>個数</th>
<th>計測時間</th>
<th>XMASS使用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>中性子遮断用パイプ</td>
<td>sus</td>
<td>2550 g</td>
<td>8</td>
<td>5.8 days</td>
<td>2550 g -</td>
</tr>
<tr>
<td>swagelok cap</td>
<td>sus</td>
<td>424 g</td>
<td>7</td>
<td>3.7 days</td>
<td>- 3</td>
</tr>
<tr>
<td>sus band</td>
<td>sus</td>
<td>305 g</td>
<td>10 m</td>
<td>2.7 days</td>
<td>- 8 m</td>
</tr>
<tr>
<td>rubber sheet</td>
<td>EPDM</td>
<td>113 g</td>
<td>-</td>
<td>2.6 days</td>
<td>17.3 g -</td>
</tr>
<tr>
<td>equator jig</td>
<td>sus</td>
<td>232 g</td>
<td>2</td>
<td>0.9 days</td>
<td>- 2</td>
</tr>
<tr>
<td>THT tube</td>
<td>Polyolefin</td>
<td>70.5 g</td>
<td>1 m</td>
<td>5.0 days</td>
<td>- 16 m</td>
</tr>
<tr>
<td>black tube</td>
<td>Nylon</td>
<td>100 g</td>
<td>1.7 m</td>
<td>1.3 days</td>
<td>- 14 m</td>
</tr>
<tr>
<td>cable tie</td>
<td>Nylon</td>
<td>80 g</td>
<td>40</td>
<td>0.9 days</td>
<td>- 10</td>
</tr>
<tr>
<td>部品名</td>
<td>素材</td>
<td>重量 (g)</td>
<td>個数</td>
<td>測定時間</td>
<td>XMASS 使用量</td>
</tr>
<tr>
<td>-----------------</td>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>M3 screw A 候補 1</td>
<td>sus</td>
<td>2024 g</td>
<td>500</td>
<td>7.2 days</td>
<td>- 500</td>
</tr>
<tr>
<td>M6 screw 候補 1</td>
<td>sus</td>
<td>5780 g</td>
<td>400</td>
<td>6.6 days</td>
<td>- 320</td>
</tr>
<tr>
<td>M6 screw 候補 2</td>
<td>sus</td>
<td>5765 g</td>
<td>400</td>
<td>6.2 days</td>
<td>- 320</td>
</tr>
<tr>
<td>M8 screw A 候補 1</td>
<td>sus</td>
<td>4329 g</td>
<td>300</td>
<td>6.6 days</td>
<td>- 420</td>
</tr>
<tr>
<td>M8 screw A 候補 2</td>
<td>sus</td>
<td>5902 g</td>
<td>400</td>
<td>6.4 days</td>
<td>- 420</td>
</tr>
<tr>
<td>M8 screw A 候補 3</td>
<td>sus</td>
<td>5840 g</td>
<td>400</td>
<td>6.6 days</td>
<td>- 420</td>
</tr>
</tbody>
</table>
関連図書

[4] ESA Planck special page

[10] 三菱化学の製品情報
（URL: http://www.m-kagaku.co.jp/products/business/corp/cmd/operation/details/1194410_3828.html）

[12] アイソトープ手帳 11 版 日本アイソトープ協会

[14] 平野重利 東京大学大学院理学系研究科修士論文 （2012）

[15] 稲田啓介 東京大学大学院理学系研究科修士論文 （2013）

[16] 草場文雄 東海大学大学院理学研究科修士論文 （2013）

[17] 小川洋 日本物理学会 2013 秋季大会 発表資料

[18] 山下雅樹 日本物理学会 2013 秋季大会 発表資料

[19] 細川佳志 宇宙線研究所 共同利用研究成果発表会 発表資料 （2013）

[20] 山越和雄 低レベル放射線計測 共立全書 （1970）

謝辞

多くの方々のお力添えをいただきながら修士課程の2年間の研究活動を進み、本論文を執筆することができました。この場を借りて皆様への感謝を述べさせていただきます。

指導教官である岸本康宏先生には本研究を行う機会を頂きました。入学したばかりでXMASS実験のことが何もわからなかった私の理解を深めるような、様々な研究テーマを与え続けて頂きました。また実際の実験や解析の進める方のみならず、研究者としての心構えや在るべき姿といったことまで、様々なことを教わりました。岸本先生のときに厳しく、ときに厳しく、そしてときに厳しい指導は先生の愛情がじみ出ているものでした。2年間本当にありがとうございました。

鈴木洋一郎先生からは物理学に携わる者としての心構えを学ばせて頂きました。ミーティング中の鈴木先生の鋭いご指摘は、いつも学ぶべきものが多かったのです。とても尊敬できる、理想的な物理学者像を体現している方でした。ありがとうございました。

森山茂光先生からは物理学の基礎となる部分から検出器の構造、解析の手法など本当に幅広いくたさんの事柄を教えて頂きました。修士ゼミでの森山先生の説明是非常にわかりやすく、たくさんの疑問を解決することができました。ありがとうございました。

安部航先生には本論文のメインテーマとなっているHPGe検出器での放射線検定の測定方法、解析方法の両方を丁寧に教えて頂きました。どんなに忙しい時でも質問に行くと真剣に丁寧に答えていただき、感謝しています。また私の解析が遅い部分をフォローして頂いたり、研究が手手しくず落ち込んでいく時には優しく励まして頂きました。安部先生がいらっしゃらなければ本論文を書き上げることはできなかったと思います。

山下雅樹先生にはムーンチェンバーと呼ばれる小型検出器を用いた実験の際にお世話になりました。実際に自らの手で検出器の触って実験を行うことの楽しさを教えて頂きました。また山下先生の巧みな話術で人を惹きつけるプレゼンテーションはとても参考になり、見習うべきものでした。

小川洋先生には本論文に載せる図に必要なデータの一一部を作って頂きました。またシミュレーション結果に対する考察についても丁寧に指導して頂きました。Byeongsu Yang先生にはモンテカルロ・シミュレーションについて基礎から丁寧に教えて頂きました。また本研究に必要だったシミュレーションを行うためのデータの一一部を作成して頂きました。平出克樹先生にはHPGe検出器の測定データの解析方法の基礎を教えて頂きました。このテーマが私が神岡施設に来て初めて取り組んだものでもあり、平出先生の指導は非常に印象深く残っています。竹田進先生にはムーンチェンバーを使った実験の際に指導して頂きました。実験を行う上でのご意見など様々なことを教えていただきました。小林兼好先生にはPMT洗浄やPMTの取り付けなど、検出器改造の様々な作業でお世話になりました。関谷洋之先生からはラドンフリーエアーや純水の循環システムなどXMASS実験に欠かすことのできない様々な装置について教えて頂きました。また、神岡研究施設のその他の先生方にも公私ともに様々な形でお世話になりました。みなさまありがとうございました。

東京大学の先輩である横澤孝章さん、五代儀一樹さん、高知尾理さん、稲田啓介さん、中野佑樹さん、深木大悟さん、名古屋大学の内田裕美さん、瀧谷寛樹さん、神戸大学の細川佳志さん、村田亜紀さん、東海大学の草場文雄さんには神岡で生活する上でさまざまな面でお世話になりました。学生同士でしか話せない悩みの相談に乗って頂いたり、食事や買い物に連れて行って頂いたり、先輩方がいなければ神岡で生活していくことはできなかったと思います。

後輩の小林雅俊君、織井安里さん、中島雄雄君、小林巧一君には先輩らしい指導などは何一つしてあげることができませんでしたが、皆さんが過ごした日々はとても楽しいものでした。今後も神岡学生仲間に一緒に神岡研究施設を盛り上げていきたいもの。
同期の岡直哉君、芳賀侑斗君、亀谷功君、須田祐介君には研究面・生活面の両方で非常に世話になりました。互いに発表練習をしたり、互いの研究テーマについて教え合ったり、将来について語り合ったり、ときには研究をサポート遊びに行ったりと神岡生活の辛いことも楽しいことも全て彼らと共にあったものでした。本当にありがとうございました。今後は進む道はそれぞれ別れることになりますが、いつの日かまた集まって学生時代の思い出話でもしてみたいものです。

また辛い時にはtwitterで弱音を吐くこともあります。そんなときに受け止め、支えとなってくれた@tanpaku3341さん、@ymtndsk1pi3さん、@nowohyeahさん、@yu_tan826さん、@sassy_tsubuyakiさん、@Motoko_titechさん、@taropomさんにも感謝しています。

最後になりましたが、ここまで育て、学生生活を応援し、20代後半にもなる息子の学費を払い続けてくれている家族と、どんなときにも笑顔にしてくれる友人のみなさんに感謝の意を述べさせていただきます。いつの日か立派な社会人になられたらあらためて、恩返しをさせて頂きます。

ありがとうございました。