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The trilepton nucleon decay modes p → eþνν and p → μþνν violate jΔðB − LÞj by two units. Using
data from a 273.4 kt yr exposure of Super-Kamiokande a search for these decays yields a fit consistent with
no signal. Accordingly, lower limits on the partial lifetimes of τp→eþνν > 1.7 × 1032 years and τp→μþνν >
2.2 × 1032 years at a 90% confidence level are obtained. These limits can constrain Grand Unified Theories
which allow for such processes.

DOI: 10.1103/PhysRevLett.113.101801 PACS numbers: 13.30.Ce, 11.30.Fs, 12.10.Dm, 14.20.Dh

There is strong theoretical motivation for a grand unified
theory (GUT) [1,2] as an underlying description of nature.
Unification of the running couplings, charge quantization,
as well as other hints point to the standard model (SM)
being an incomplete theory. Though the GUT energy scale
is inaccessible to accelerator experiments a signature
prediction of these theories is an unstable proton with
lifetimes that can be probed by large underground experi-
ments. Observation of proton decay would constitute strong
evidence for physics beyond the SM, and nonobservation
imposes stringent constraints on GUT models.
One of the simplest unification scenarios, based on

minimal SU(5), has been decisively ruled out by limits
on p → eþπ0 [3–5]. On the other hand, models based on
minimal supersymmetric (SUSY) extensions are strongly
constrained by bounds from p → ν̄Kþ [6], and with signs
of SUSY unobserved at the Large Hadron Collider (LHC)
[7,8], there is reinvigorated interest in other approaches and
possible signatures. A popular scenario may be found in a
left-right symmetric partial unification of Pati and Salam
(PS) [9] and its embedding into SO(10), providing a natural
right-handed neutrino candidate and unifying quarks and
leptons. In the scheme of Refs. [10,11], trilepton modes
such as p → eþνν and p → μþνν could become signifi-
cant. This work describes searches for these modes. Their
observation, coupled with nonobservation of p → eþπ0,
may allow for differentiation between PS and its SO(10)
embedding [11]. Violating baryon and lepton number by
two units jΔðB − LÞj ¼ 2, unusual for standard decay
channels, may lead to favorable implications for baryo-
genesis [12]. Interestingly, these trilepton proton decay
modes were offered as an explanation [13,14] of the
atmospheric neutrino flavor “anomaly” [15,16] before
neutrino oscillations were established [17].
In this analysis, the data collected at Super-Kamiokande

(SK) during the data taking periods of SK-I (May 1996–
July 2001, 1489.2 live days), SK-II (January 2003–October
2005, 798.6 live days), SK-III (September 2006–August
2008, 518.1 live days) and the ongoing SK-IV experiment
(September 2008–October 2013, 1632.3 live days), corre-
sponding to a combined exposure of 273.4 kt yr, are
analyzed. The 50 kiloton SK water Cherenkov detector
(22.5 kton fiducial volume) is located beneath a one-km

rock overburden (2700 m water equivalent) in the Kamioka
mine in Japan. Details of the detector design and perfor-
mance in each SK period, as well as calibration, data
reduction, and simulation information can be found else-
where [18,19]. This analysis considers only events in which
all observed Cherenkov light was fully contained within the
inner detector.
The trilepton decay modes p → eþνν and p → μþνν are

the first three-body nucleon decay searches undertaken by
SK. Since the neutrinos cannot be observed, the only
signature is the appearance of a charged lepton, eþ or μþ.
Accordingly, the invariant mass of the decay nucleon
cannot be reconstructed. Unlike two-body decays, where
each final-state particle carries away about half of the
nucleon rest mass energy, in these three-body decays the
charged lepton has a broad energy distribution, whose
mean is 313 MeV for the decay of a free proton. Thus,
atmospheric neutrino interactions dominate the lepton
energy spectra and require a search for the proton decay
signal superimposed on a substantial background. Limits
on these modes from the IMB-3 [3] and Fréjus [20]
experiments, 1.7 × 1031 and 2.1 × 1031 years, were
obtained via simple counting techniques. In contrast, we
employ energy spectrum fits. This technique is particularly
well suited to three-body searches with large backgrounds
as it takes full advantage of the signal and background
spectral information.
The detection efficiency for nucleon decays in water is

estimated from Monte Carlo (MC) simulations in which all
protons within the H2O molecule are assumed to decay
with equal probability. Signal events are obtained by
generating final state particles from the proton’s decay
with energy and momentum uniformly distributed within
the phase space. Conservation of kinematic variables
constrain the processes to produce viable particle spectra.
Specifics of the decay dynamics, which are model depen-
dent but are not taken into account here, can play a role in
determining the energy distributions of the resulting par-
ticles in three-body decays. The assumption of a flat phase
space, as employed within this analysis, was validated by
comparing the final state charged lepton spectrum gener-
ated with a flat phase space to the spectrum originating
from the three-body phase space of muon decay (reaction),
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as recently proposed [21] to account for decays encom-
passing a broad range of models. We have confirmed that
adopting a nonflat phase space does not significantly alter
the results of the analysis, because the charged lepton
spectra do not have sufficiently different shapes (even for
the decay of a free proton, which is minimally smeared).
Thus, we conclude, that employing flat phase space in the
signal simulation, which has been previously assumed in
other similar searches [3,20] without much justification, is
warranted.
In the signal simulation, the effects of Fermi momentum

and the nuclear binding energy as well as nucleon-nucleon
correlated decays are taken into account [22,23]. Fermi
momentum distributions are simulated using a spectral
function fit to 12C electron scattering data [24]. Considering
only events generated within the fiducial volume (FV) of
the detector, the signal MC simulation consists of roughly
4000 events for each of the SK data periods.
Atmospheric neutrino background interactions are gen-

erated using the flux of Honda et al. [25] and the NEUT

simulation package [26], which uses a relativistic Fermi gas
model. The SK detector simulation [19] is based on the
GEANT-3 [27] package. A background MC simulation
corresponding to a 500 year exposure of the detector is
generated for each SK period.
The following event selection criteria are applied to the

fully contained data: (1) a single Cherenkov ring is present,
(2) the ring is showering (electronlike) for p → eþνν and
nonshowering (muonlike) for p → μþνν, (3) there are zero
decay electrons for p → eþνν and one decay electron for
p → μþνν, (4) the reconstructed momentum lies in the
range 100 MeV=c ≤ pe ≤ 1000 MeV=c for p → eþνν
and in the range 200 MeV=c ≤ pμ ≤ 1000 MeV=c for
p → μþνν. Reconstruction details may be found in
Ref. [28]. The signal detection efficiency is defined as
the fraction of events passing these selection criteria
compared to the total number of events generated within
the true fiducial volume (see Table I). The increase in
efficiency seen in SK-IV for the p → μþνν mode is caused
by a 20% improvement in the detection of muon decay
electrons after an upgrade of the detector electronics for this
period [19].
In the case of p → eþνν, the dominant (78%) back-

ground after selection criteria are applied is due to νe
quasielastic charged current (CCQE) interactions. The
majority of the remaining background is due to νe and

νμ charged current (CC) pion production as well as the all
flavor’s neutral current (NC) single pion production (12%
and 5%, respectively). There are minor contributions from
other processes such as coherent pion production (order of
1%). Similarly for the p → μþνν mode, νμ CCQE inter-
actions dominate (80%), with the largest remaining con-
tribution coming from CC single pion production (15%).
Additionally there are slight contributions from NC pion
production, CC coherent and multiple-pion production
(around 1% each). Processes not mentioned here are
negligible.
A spectrum fit is performed on the reconstructed charged

lepton momentum distributions of selected candidates. The
foundation of the fit is a χ2 minimization with systematic
errors accounted for by quadratic penalties (“pull terms") as
described in Ref. [29]. The χ2 function is defined as

χ2 ¼ 2
XNbins

i¼1

�
zi − Nobs

i þ Nobs
i ln

Nobs
i

zi

�
þ

XNsyserr

j¼1

�
ϵj
σj

�
2

;

zi ¼ αNback
i

�
1þ

XNsyserr
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where i labels the analysis bins. The terms Nobs
i , Nsig

i , Nback
i

are the number of observed data, signal MC and back-
ground MC events in bin i. The MC expectation in a bin is
taken to be Nexp

i ¼ αNback
i þ βNsig

i , with α and β denoting
the background (atmospheric neutrino) and signal (nucleon
decay) normalizations. The jth systematic error is
accounted for by the “pull term,” where ϵj is the fit error
parameter and fji is the fractional change in the MC
expectation bin due to a 1 sigma uncertainty σj of the
error. A two-parameter fit is performed to the parameters α
and β, with the point ðα; βÞ ¼ ð1; 0Þ set to correspond to no
signal hypothesis. With the signal spectrum normalized by
area to the background prior to the fit, β ¼ 1 corresponds to
the amount of nucleon decay events equal to the quantity of
the background MC simulation after detector live time
normalization. The parameter space of ðα; βÞ is allowed to
vary in the intervals of (α ∈ ½0.8; 1.2�, β ∈ ½0.0; 0.2�). The
χ2 of Eq. (1) is minimized with respect to ϵj according to
∂χ2=∂ϵj ¼ 0, yielding a set of equations which are solved
iteratively, and the global minimum is defined as the best

TABLE I. Best fit parameter values, signal detection efficiency for each SK running period, 90% C.L. value of β parameter, allowed
number of nucleon decay events in the full 273.4 kt yr exposure (SK-I: 91.7, SK-II: 49.2, SK-III: 31.9, SK-IV: 100.5) and a partial
lifetime limit for each decay mode at 90% C.L.

Decay
mode

Best fit values
ðα; βÞ

Signal efficiency for SK-I, -II, -III, -IV (%)
(efficiency uncertainty) β90 C:L:

Signal events at 90% C.L.
(N90 C:L:)

τ=B
(×1032 yrs)

p → eþνν (1.05, 0.03) 88.8, 88.0, 89.2, 87.8 (�0.5, �0.5, �0.5, �0.5) 0.06 459 1.7
p → μþνν (0.99, 0.02) 64.4, 65.0, 67.0, 78.4 (�0.7, �0.7, �0.7, �0.6) 0.05 286 2.2
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fit. The confidence level intervals are later derived from the
χ2 minimization at each point in the ðα; βÞ plane after
subtracting off this global minimum. Namely, the C.L. limit
is based on the constant Δχ2 critical value corresponding
to the 90% C.L. for a fit with 1 degree of freedom,
after profiling out β’s dependence on α from the two-
parameter fit.
Combining signal and background into each analysis

MC expectation bin, as employed in a typical fit of this sort
(see Ref. [29]), is an approximate approach where system-
atic errors for signal as well as background are applied to
every analysis bin which contains both. In this analysis we
employ a more accurate error treatment, splitting signal and
background (doubling the number of analysis bins) for the
application of systematic errors and then recombining them
during the χ2 minimization. A total of 72 momentum bins
(18, 50-MeV=c wide bins for each SK period) are con-
sidered for p → eþνν, corresponding to 144 MC bins when
the background and signal are separated. In the case of
p → μþνν a total of 64 momentum bins (16, 50-MeV=c
wide bins for each SK period) are used in the analysis,
corresponding to 128 MC bins with background and signal
separated.
Systematic errors may be divided into several categories:

background systematics, detector and reconstruction
systematics, and signal systematics. Detector and
reconstruction systematics are common to both signal
and background.
This study starts by considering all 154 systematic

uncertainties which are taken into account in the standard
SK neutrino oscillation analysis [30], along with two
signal-specific systematic effects related to correlated
decays and Fermi momentum. In order to select which
systematic uncertainties to include in the limit calculation,
only error terms with at least one jfji j > 0.05 are used in the
analysis. Loosening the selection to jfji j > 0.01 does not
significantly affect the analyses results but greatly increases
the number of errors to be treated. After selection, there are
11 systematic error terms for both p → eþνν and

p → μþνν. The main systematic contributions originate
from energy calibration uncertainties (common error to
both signal and background), uncertainties related to the
atmospheric neutrino flux, and uncertainties in the signal
simulation. The complete list of errors, their uncertainties,
and fitted pull terms can be found in Table II. Errors
specific to signal and background are denoted by S and B,
respectively, while those that are common to both are
denoted by SB.
Performing the fit allows us to obtain the overall back-

ground and signal normalizations α and β. For the mode
p → eþνν the data’s best fit point is found to be ðα; βÞ ¼
ð1.05; 0.03Þ with χ2 ¼ 65.6=70 dof, while for p → μþνν
the result is ðα; βÞ ¼ ð0.99; 0.02Þ with χ2 ¼ 66.1=62 dof.
The Δχ2ð¼ χ2 − χ2minÞ values corresponding to no proton
decay signal being present, are 1.5 and 0.5 for p → eþνν
and p → μþνν modes, respectively. These outcomes are
consistent with no signal present at 1σ level. Extracting the
90% confidence level allowed value of β (β90 C:L:.) from the
fit, which is found to be 0.06 for p → eþνν and 0.05 for
p → μþνν, respectively, a lower lifetime limit on these
decays can be set. From β90 C:L:. the amount of signal
allowed at the 90% confidence level can be computed as
N90 C:L: ¼ β90 C:L:Nsignal. The partial lifetime limit for each
decay mode is then calculated according to

τ90 C:L:=B ¼
P

sk4
sk¼sk1 λskϵskN

nucleons

N90 C:L:
; ð2Þ

where B represents the branching ratio of a process,
Nnucleons is the number of nucleons per kiloton of water
(3.3 × 1032 protons), ϵsk is the signal efficiency in each SK
phase, λsk is the corresponding exposure in kiloton · years,
and N90 C:L:. is the amount of signal allowed at the 90%
confidence level. The signal efficiency, number of decay
sources, as well as the signal normalization values used for
the lifetime calculation can be found in Table I. The fitted
momentum spectra as well as residuals for both modes

TABLE II. Systematic errors of the nucleon decay spectrum fits, with 1σ uncertainties and resulting fit pull terms. Errors specific to
signal and background are denoted by S and B, while those that are common to both by SB.

Decay mode p → eþνν p → μþνν
Systematic error 1-σ uncertainty (%) Fit pull (σ) Fit pull (σ)

Final state interactions (FSIs) 10 0.08 −0.55 B
Flux normalization (Eν < 1 GeV) 25a −0.36 −0.42 B
Flux normalization (Eν > 1 GeV) 15b −0.86 −0.90 B
MA in ν interactions 10 0.32 0.48 B
Single meson cross section in ν interactions 10 −0.36 −0.16 B
Energy calibration of SK-I, -II, -III, -IV 1.1, 1.7, 2.7, 2.3 0.51, −1.01, 0.44, 0.39 −0.50, 0.06, −0.16, 0.25 SB
Fermi model comparison 10c −0.25 0.02 S
Nucleon-nucleon correlated decay 100 −0.05 0.01 S
aUncertainty linearly decreases with logEν from 25% (0.1 GeV) to 7% (1 GeV).
bUncertainty is 7% up to 10 GeV, linearly increases with logEν from 7% (10 GeV) to 12% (100 GeV) and then 20% (1 TeV).
cComparison of spectral function and Fermi gas model.
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appear in Fig. 1. Momentum spectra for the 273.4 kt yr of
combined SK data (black dots), the best-fit result for the
atmospheric neutrino background, and signal Monte Carlo
simulation (solid line) as well as the amount of nucleon
decay allowed at the 90% confidence level (hatched
histogram) for p → eþνν (left) and p → μþνν (right) are
shown. Residuals from data after the background MC
simulation is subtracted are also depicted (bottom histo-
grams). From the analysis we set partial lifetime limits of
1.7 × 1032 and 2.2 × 1032 years for p → eþνν and
p → μþνν, respectively. The sensitivity to these modes
is calculated to be 2.7 × 1032 and 2.5 × 1032 years. The
lifetime limits found in this study are an order of magnitude
improvement over the previous results [3,20]. These results
provide strong constraints to both the permitted parameter
space of Refs. [11,12], which predict lifetimes of around
1030–1033 years, and on other GUT models which allow for
similar processes. We note, that the analyses presented in
this work are only weakly model dependent, due to the
assumption of a flat phase space in the signal generation.
However, this assumption agrees well with alternative
phase space considerations [21] in the context of vector-
or scalar-mediated proton decays, which are typical of GUT
models [1,2,9].
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FIG. 1. Reconstructed momentum distribution for 273.4 kt yr of combined SK data (black dots), the best fit result for the atmospheric
neutrino background and signal Monte Carlo simulation (solid line) as well as the 90% confidence level allowed amount of nucleon
decay (hatched histogram) for p → eþνν (left) and p → μþνν (right). Residuals from data after background subtraction (bottom
histograms).
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