Direct oscillatory evidence from L/E analysis in Super-Kamiokande

Masaki Ishitsuka
ICRR

for Super-Kamiokande collaboration
Zenith angle distributions

Other models can explain zenith angle dependent muon deficit.

How can we distinguish oscillation from other hypotheses?
Neutrino oscillation:
\[P_{\mu\mu} = 1 - \sin^2 2\theta \sin^2 (1.27 \frac{\Delta m^2 L}{E}) \]

Neutrino decay:
\[P_{\mu\mu} = (\cos^2 \theta + \sin^2 \theta \times \exp(-\frac{m}{2\tau} \frac{L}{E}))^2 \]
\[P_{\mu\mu} = 1 - \frac{1}{2} \sin^2 2\theta \times (1 - \exp(-\gamma_0 \frac{L}{E})) \]

The first dip can be observed:
→ Direct evidence for oscillations
→ Strong constraint to oscillation parameters, especially \(\Delta m^2 \) value
Neutrino energy is reconstructed from observed energy using relations based on MC simulation.

Neutrino flight length is estimated from zenith angle of particle direction.

Zenith angle \(\cos(\Theta) \) → Flight length

Neutrino energy

Neutrino flight length
Select events with high resolution in L/E

Bad L/E resolution for

- horizontally going events → due to large dL/dcosθ
- low energy events → due to large scattering angle

Δ(L/E)=70%
FC single-ring, multi-ring μ-like

Expand fiducial volume

PC

Classify PC events using OD charge

I. OD stopping
II. OD through going

observed charge / expectation from through-going

1.5m from top & bottom
1m from barrel

22.5kt
26.4kt

OD stopping MC

OD through-going MC

Preliminary
<table>
<thead>
<tr>
<th>Type</th>
<th>Data</th>
<th>MC</th>
<th>CC ν_μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>single-ring</td>
<td>1619</td>
<td>2105.6</td>
<td>(98.3%)</td>
</tr>
<tr>
<td>multi-ring</td>
<td>502</td>
<td>813.0</td>
<td>(94.2%)</td>
</tr>
<tr>
<td>PC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stopping</td>
<td>114</td>
<td>137.0</td>
<td>(95.4%)</td>
</tr>
<tr>
<td>through-going</td>
<td>491</td>
<td>670.1</td>
<td>(99.2%)</td>
</tr>
<tr>
<td>Total</td>
<td>2726</td>
<td>3725.7</td>
<td></td>
</tr>
</tbody>
</table>
First dip is observed as expected from neutrino oscillation.

Mostly upward

Preliminary

Null oscillation

MC

Data/Prediction (null oscillation)

Best fit expectation w/ systematic errors

$\Delta m^2 = 2.4 \times 10^{-3}, \sin^2 2\theta = 1.00$

$\chi^2_{\text{min}} = 37.8/40 \text{ d.o.f}$

Mostly downward

Best-fit expectation

1489.2 days FC+PC
Definition of χ^2

$$L (N_{\text{exp}}, N_{\text{obs}}) = \prod_{n=1}^{43} \frac{\exp(-N_{\text{exp}}^n)(N_{\text{exp}}^n)^{N_{\text{obs}}^n}}{N_{\text{obs}}^n!} \times \prod_{i=1}^{25} \exp\left(-\frac{\varepsilon_i^2}{2\sigma_i^2} \right)$$

Poisson with systematic errors

$$\chi^2 \equiv -2 \ln \left(\frac{L (N_{\text{exp}}, N_{\text{obs}})}{L (N_{\text{obs}}, N_{\text{obs}})} \right) = \sum_{n=1}^{43} \left[2(N_{\text{exp}}^n - N_{\text{obs}}^n) + 2N_{\text{obs}}^n \ln\left(\frac{N_{\text{obs}}^n}{N_{\text{exp}}^n} \right) \right] + \sum_{i=1}^{25} \left(\frac{\varepsilon_i}{\sigma_i} \right)^2$$

N_{obs}: observed number of events
N_{exp}: expectation from MC
ε_i: systematic error term
σ_i: sigma of systematic error

Various systematic effects in detector, flux calculation and neutrino interaction are taken into account
Preliminary

\[\Delta m^2 = 2.4 \times 10^{-3}, \sin^2 2\theta = 1.00 \]
\[\chi^2_{\text{min}} = 37.8 / 40 \text{ d.o.f} \]

\((\sin^2 2\theta = 1.02, \chi^2_{\text{min}} = 37.7 / 40 \text{ d.o.f}) \)

1.9x10^{-3} < \Delta m^2 < 3.0x10^{-3} \text{ eV}^2

0.90 < \sin^2 2\theta \quad \text{at 90\% C.L.}

Consistent with standard zenith angle analysis

- 99\% C.L.
- 90\% C.L.
- 68\% C.L.

90\% allowed regions
5FTUTGPSOFVUSJOPEFDBZEFDPIFSFODF

Oscillation: $\chi^2_{\text{min}}=37.8/40$ d.o.f
Decay: $\chi^2_{\text{min}}=49.2/40$ d.o.f $\rightarrow \Delta\chi^2=11.4$
Decoherence: $\chi^2_{\text{min}}=52.4/40$ d.o.f $\rightarrow \Delta\chi^2=14.6$

First dip observed in data cannot be explained by alternative hypotheses.

3.4σ to ν decay

3.8σ to ν decoherence

Preliminary
Sensitivities to alternative models

\[\Delta \chi^2 \]

\(\nu \) decoherence

\(\nu \) decay

Consistent with the expectation

\(\nu_\mu \leftrightarrow \nu_\tau \) obtained \(\Delta \chi^2 \)

(\(\Delta m^2 = 2.0 \times 10^{-3} \text{eV}^2, \sin^2 2\theta = 1.0 \))

L/E resolution cut at 70%
Conclusions

Measurement of L/E dependence of flavor transition probability

First dip was observed as expected from neutrino oscillation

→ cannot be explained by alternative hypotheses
 (3.4 σ to ν decay, 3.8 σ to ν decoherence)

→ gives strong constraint to neutrino oscillation parameters
 \[1.9 \times 10^{-3} < \Delta m^2 < 3.0 \times 10^{-3} \text{eV}^2 \]
 \[0.90 < \sin^2 2\theta \quad \text{at 90}\%\text{C.L.} \]

consistent with zenith angle analysis

First evidence that neutrino transition probability obeys sinusoidal function as predicted in neutrino oscillation